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Abstract

This thesis sheds light on key aspects of Persistent Software Transactional Memory.

Persistent memory is a novel memory paradigm that retains its contents even in the event
of power loss. It is widely expected to become ubiquitous, and hardware architectures
are already providing support for persistent memory programming. However, writing
persistent programs is extremely challenging, as it requires the programmer to keep
track of which memory writes have become persistent and which have not. This is further
complicated in a multi-threaded setting by the intricate interplay between the rules of
memory persistency (which determine the order in which writes become persistent) and
those of memory consistency (which determine what data can be observed by which
threads).

Software Transactional Memory (STM) [132] has emerged as a highly promising solu-
tion for concurrency control in multi-threaded environments, allowing programmers to
concentrate on algorithm design rather than intricate locking mechanisms. Recent re-
search efforts focus on integrating durability into transactions. Persistent STMs aim to
accomplish more than just thread synchronization; they also endeavor to maintain per-
sistent memory in a consistent state. Implementing such mechanisms can greatly benefit
developers, as they would no longer be burdened with the responsibility of persisting
coherently memory locations. However, due to their innate complexity, persistent STMs
are susceptible to errors, necessitating careful design and thorough testing. In this thesis,
we are approaching the problem of persistent STMs correctness from a formal methods
perspective.

At the core of this research two main topics are addressed. The first topic concerns the
nature of software transactional memory correctness in the face of persistency. To this
end, we present a novel definition of software transactional memory correctness, durable
opacity [23], which adapts opacity to the persistent memory setting.

The second topic concerns the verification of persistent transactional memory algorithms.
We aim to investigate how existing verification techniques designed for volatile memory
algorithms can be adapted and applied in the context of persistent memory. In our
initial work [23], we attempt to verify a durably opaque version of an STM algorithm,
TML [38]. In this first endeavor, we assume a simplified model, Persistent Sequential
Consistency (persistent SC), which lays the groundwork for understanding verification
challenges unique to persistency. The proposed proof technique constitutes an adaptation
to persistency of the verification method demonstrated in [44]. In our second work, we are
focusing on developing an Owicki–Gries program logic (Pierogi) for reasoning about x86
code that uses low-level operations for controlling persistency such as fences and flushes.
Our logic is able to accommodate the persistency features and weak behaviors induced
by the Px86 model. We exemplify the utility of Pierogi by verifying a number of
persistent x86 litmus tests. In our final work, we adapt our initial STM implementation
to the realistic Px86 model and show that it is durably opaque. Our correctness proof
is operational and builds on the Pierogi logic as well as the simulation-based proof
technique demonstrated in our first work. As far as we are aware, this is the first
application of simulation-based proofs for persistent x86 programs.

Our entire development has been mechanized in the Isabelle/HOL proof assistant.
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Chapter 1

Introduction

1.1 An Introduction to Persistent Memory

Persistent memory (PMem) promises the combination of the density and non-volatility
of NAND Flash-based solid-state disks (SSDs) with performance comparable to volatile
memory (DRAM). Persistent memory possesses aspects of both storage and memory.
Instead, it can be viewed as a third tier that is to be used alongside memory and stor-
age. Persistent memory is well-suited for applications that require frequent access and
data retrieval from large, complex datasets as well as applications that are sensitive to
the downtime caused by system crashes. Use cases include in-memory databases, vir-
tualization, big data, high-performance scientific computing, cloud computing/IoT, and
artificial intelligence applications.

The most commercialized persistent memory, until recently, was Optane DC Persistent
Memory, formed by combining DDR DIMMs and non-volatile Optane DC persistent
memory modules. The Optane DC persistent memory module is Intel and Micron’s 3D
XpointDIMM, implemented to coexist with DRAM on the memory bus. Companies such
as Cypress/AgigA, Viking, Netlist, and Micron have previously paved the way for the
adoption of the Optane DIMM by introducing technologies like the NVDIMM-N module.
Additionally, Everspin has demonstrated the MRAM DIMM, which further supports the
development of persistent memory solutions.

This thesis primarily uses the term persistent memory (PMem) to refer to Optane DC
Persistent Memory, while the terms NVDIMM, Optane DIMM, and DC PMM are used
interchangeably and refer to the DC persistent memory module. However, it’s worth
noting that the challenges presented by Optane DC Persistent Memory are likely to be
similar across different implementations of persistent memory. Therefore, the methods
developed in this thesis can be adapted to address other persistent memory implemen-
tations.

PMem provides fast access to critical data while allowing both byte-addressability and
persistency. Byte-addressability enables applications to directly access data without
having to issue I/O operations to retrieve data from a storage unit. Such operations are
particularly expensive as they require data to be paged from the storage unit or streamed
from the network before being copied to the main memory for further processing. Com-
pared to DRAM, persistent memory modules are available in much larger capacities at
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a lower cost per GB. This means that applications can handle and store a much larger
volume of data in place. Therefore, even when not used for its non-volatility feature,
persistent memory can significantly decrease the number of disk I/O operations, leading
to improved performance.

Persistent memory is placed in between DDR DRAM and NAND SSD in the memory/s-
torage hierarchy in terms of latency cost and capacity. Fig. 1.1 provides estimated latency
values for different memory/storage technologies. As depicted, persistent memory offers
latency that is comparable to DRAM in terms of speed, measured in nanoseconds, and
also provides persistency. On the other hand, block storage offers persistency but has
higher latencies, which typically start in the microsecond range and vary depending on
the type of technology used.

CPU Registers

CPU Caches

DDR DRAM

Persistent Memory

NAND SSD

HardDisk Drives

Tape

CostLatency Capacity GranularityAccessPersistence

~0.1ns

1-10ns

~80-100ns

<1us

10-100us

~10ms

~100ms

Load/Store 

I/O 
Commands

Instructions

Block

Cache
 Line

Volatile

Non
Volatile

($
/G

iB
)

Figure 1.1: Estimated metrics for different memory/storage types as illustrated in [129].

1.2 Abstract Persistency Model

In the literature, numerous memory models have been proposed for persistent memory
systems [24, 90, 120–123]. In order to describe the behaviors that can potentially arise
within the persistent programming paradigm, we begin by introducing an abstract model
of the memory architecture that we assume (Fig. 1.2). In this model, we depict persistent
memory as an additional layer to the well-known total store order (TSO) model [135]. In
the event of a crash, we expect any data that has not been stored in persistent memory,
residing in the store buffers or volatile memory, to be lost.

The persistent memory model in Fig. 1.2 not only encompasses the inherent complexity
of TSO, but also incorporates additional complexity pertaining to persistency. In order
to understand Fig. 1.2, we begin by recapping the TSO model (§1.2.1). Later, in §1.2.2,
we introduce the persistent memory layer, offering a glimpse into the program behaviors
one can expect related to persistency.
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Figure 1.2: The TSO enhanced with persistency memory model. The volatile compo-
nents are illustrated in red color (store buffers, volatile memory) and the non-volatile
components are illustrated in green color (persistent memory).

1.2.1 The Total Store Order Model

TSO aims to reduce write latency by introducing, to each core/thread, a local store
buffer. When a thread executes a write, the write is recorded solely in the thread’s local
buffer. While in the buffer, this write is only visible to the thread that issued it. The
buffered writes are eventually debuffered and sent to the memory at a later point in time,
following a FIFO order. On the other hand, reads are performed in real-time. When a
thread requests to read a location, it first checks its own buffer. If there are recorded
writes for this location in the buffer, the thread returns the value of the most recent
write.

The above model enables a thread to avoid stalling its execution until a write operation
is completed. Instead, it can proceed with subsequent read operations, resulting in a
reduction of the overall program latency. However, this model comes with a potential
drawback. Due to the fact that the order in which writes become visible to other threads
differs from the order in which they are initially issued, it introduces counterintuitive
behaviors to the program, which leads to unexpected outcomes and complicates reasoning
about correctness. We illustrate some of the most typical patterns occurring in TSO
(Fig. 1.3) by demonstrating three examples presented in [131]. In all the examples
demonstrated in this thesis, we assume that all locations and registers are 0 in the initial
state. Furthermore, we assume that the left thread of concurrent programs has id 1, and
the right thread has id 2.

We start with the store buffer pattern (example: sb). In this example, after thread 1
issues store x 1, it caches the store to its local store buffer and then proceeds to execute
the subsequent read. Similarly, after thread 2 issues store y 1, it caches the store to its
local store buffer and then proceeds to execute the subsequent read. In this scenario,
it is possible for thread 1 to read the value 0 for y while the write operation on y from
thread 2 is still pending in its store buffer. Symmetrically, there is a chance that thread
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store x 1;
a := load y

store y 1;
b := loadx;

a, b ∈ {0, 1}
(sb)

store x 1;
mfence;
a := load y

store y 1;
mfence;
b := loadx;

a = 1 ∨ b = 1

(sb + mfence)

store x 1;
store y 1;

a := load y;
if (a=1)
b := loadx

a = 1 ⇒ b = 1

(mp)

Figure 1.3: TSO examples presented in [131]. In all examples x, y, z are distinct
locations with initial value 0, and α is a (thread-local) register

2 reads the value 0 for x while the write operation on x from thread 1 is still in its store
buffer.

To accommodate this problem, one can control the debuffering process, by utilizing in-
structions that stall the execution until the buffer is empty. These instructions, such
as RMW (Read-Modify-Write) and fences, provide strong ordering guarantees. For in-
stance (example: sb + mfence), placing a memory fence (mfence) instruction after the
store x 1 operation of thread 1 causes the program execution to pause until the pre-
ceding writes of thread 1 are fully debuffered. Consequently, after thread 1 executes
the mfence, the value 1 becomes visible to thread 2 for the location x. Considering
the symmetry of thread 2, we can ensure that by the end of the execution, at least one
thread has executed its mfence, implying either a = 1 or b = 1.

Another typical pattern of TSO is message passing (example: mp). In this example, the
load of value 1 for y in register a from the second thread indicates that the store of 1 at
y from the first thread has already been evicted from its store buffer. Since the store of
1 at x precedes it, this write has also been evicted from the store buffer and therefore
is visible to the second thread. Because of the message passing synchronization if the
second thread reads the last written value at y it can only observe only the last written
value at x.

1.2.2 The Total Store Order Model Enhanced with Persistency

In the context of TSO with persistent memory on top (Fig. 1.2), it is essential to con-
sider not only the order in which writes are debuffered from the store buffers but also
the order in which the writes transition from volatile to persistent memory. These orders
may differ due to multiple layers of cache in volatile memory. The specific configura-
tion of these caches, including factors such as block size, mapping policy, writing policy,
and coherence protocol, significantly influences the order in which writes are evicted to
persistent memory. In fact, according to Intel’s reference manual [1] and as further elab-
orated by Raad et al. [122], when a thread performs two writes on distinct locations, the
order in which these writes persist can vary, and there is even a possibility that they
might not persist at all. To afford more control regarding persisting writes, Intel, ARM,
and other vendors enhanced their instruction set architecture with instructions dedicated
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store x 1;
store y 1;

 :x, y∈{0, 1}
(store)

store x 1;
flush x;

store y 1;
 :y=1 ⇒ x=1

(flush)

store x 1;
flushopt x;
store y 1;

 : x, y∈{0, 1}
(opt. flush)

store x 1;
store y 1;

a := load y;
if (a=1)

flushopt x;
sfence;

store z 1;
 : z=1 ⇒ x=1 ∧ y=1

(fmp)

Figure 1.4: Example Px86 programs by Raad et al. [122] where the assertion  defines
the possible persisted values during the execution. In all examples x, y, z are distinct
locations with initial value 0, and α is a (thread-local) register.

to explicitly flush all the locations of a specified cache line to persistent memory. For
instance, ARMv8 [9] offers the DC CVAP instruction, while Px86 [1] provides explicit
persist instructions of varying strengths (flush,flushopt ). Despite these advancements,
utilizing these instructions effectively requires careful consideration, due to their asyn-
chronous nature and potential performance implications. Analogously to the store buffer
level, it is possible to prevent the reordering of the explicit persist instructions’ effect by
combining them with instructions (persist barriers) that pause the program execution
until the locations of the specified cache line have fully reached the persistent memory.
For example, ARMv8 provides a data synchronisation barrier (DSBfull), which, unlike
the less strong data memory barrier (DMBfull) instruction, ensures that no instruction
in program order after this instruction executes until the earlier DC CVAP instruc-
tions are complete. Likewise, in the Px86 architecture, there are multiple types of persist
barriers. These include the mfence and RMW instructions, as well as a weaker fence
instruction, the store fence (sfence).

To provide a brief overview of the behaviors of Intel’s different persistent memory in-
structions, we use four examples (Fig. 1.4) by Raad et al. [122]. The assertion at the
end of each program (indicated by  ) expresses the values of the corresponding locations
in persistent memory immediately after the occurrence of a crash. In the context of this
thesis, a crash is defined as an event that disrupts the normal operation of a computer
system. Crashes can occur due to various factors, including hardware failures, software
bugs, and power failures. Although the consequences of a crash can differ depending on
its cause, our focus here is exclusively on its effects on the underlying memory model.
Unless specified otherwise, we will assume that crashes, regardless of their origin, affect
the entire system and result in the loss of context for all volatile system components. To
this end, in this thesis, we are using the terms power failure, crash, and system crash
interchangeably.

In the first example (store), the value 1 is first stored on location x, followed by the
store of 1 on location y. In this case, there is no guarantee regarding the order in which
these stores will be persisted, or if they will persist at all. Therefore, at any point of
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the execution, x and y can hold the previous or their new written values in persistent
memory.

In example flush, we include a flush x instruction immediately following the store
operation of 1 into x. The purpose of the flush instruction on x is to ensure that
all the locations of the cache line that x belongs to, are written back to persistent
memory. Consequently, once the flush x instruction is executed, the value 1 for x
is guaranteed to be stored in persistent memory. Assuming that the subsequent write
operation (store y 1) also reaches persistent memory, we can conclude that the preceding
flush x instruction occurred prior to a system crash. Hence, if y is 1 in persistent
memory, we can infer that x is also 1.

Performing a flushopt x instruction (example: opt. flush) instead of flush x, weak-
ens the persistent memory invariant. This is because the optimized flush instruction
(flushopt), flushes a single cache line but in an asynchronous manner (without blocking
the execution of the corresponding thread). Consequently, its effect might take place
after the last store (store y 1). As a result, even if a crash occurs after y persists,
there is no guarantee that x will persist. To restrict the additional weak behaviors that
flushopt introduces, one can use the sfence instruction that orders store instructions
with flushopt. The flushopt instruction is guaranteed to take effect (the contents of the
given cache line reach the persistent memory) before the execution point of the following
sfence instruction.

Example fmp constitutes a Px86 message passing example. As in TSO, the load of
value 1 for y in register a from the second thread, indicates that the store of 1 at y
from the first thread has been already evicted from its store buffer. Since the store of
1 at x precedes it, this write has also been evicted from the store buffer and therefore
is visible to the second thread. Thanks to message passing if the second thread reads
the last written value at y it is obliged to observe only the last written value at x. The
flushopt x instruction that follows can not be reordered before the preceding load, thus
it observes 1 at x. After the execution of the proceeding sfence, 1 reaches the persistent
memory. If persistent memory obtains 1 for z, it means that no crash occurred until the
execution point of store z 1 and thus x = 1 in persistent memory.

1.2.3 Persistent Memory Models Used in This Thesis

Utilizing persist instructions and persist barriers, when necessary, can help prevent re-
ordering and strengthen persistency guarantees. However, the correct use of these in-
structions requires a deep understanding of their underlying memory semantics and po-
tential interactions. In this work we approach the verification of durable (persistent)
algorithms by considering two memory models of increasing complexity. In particular,
we begin by considering a strict memory model, where all memory operations are ap-
peared to be executed in a strictly sequential order. Subsequently, we delve into a weak
memory model, characterized by the possibility that different threads may perceive op-
erations occurring in different orders. Below, we provide a short description of the two
memory models.

Persistent Sequential Consistency. We initially consider a simplified conceptual mem-
ory model (persistent SC) which involves the following considerations: 1) It ignores
the complexity induced by the total store buffers of TSO. This model assumes that
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all the writes are immediately becoming observable to all the threads after they are
issued. 2) It only supports a synchronous flush instruction. However, a write can
still persist asynchronously due to a natural cache-line eviction. Nevertheless, we
assume that the only means of controlling the persistence mechanism is through a
synchronous flush instruction, which is semantically equivalent to the Px86 flush
instruction. Consequently, once a location x is flushed, we consider its value to im-
mediately reach the persistent memory without the need for persist barriers. The
above model allows us to examine some of the fundamental problems associated
with persistent memory verification, such as decoupling persistency from thread
synchronization, determining the correct placement of flush instructions, and rea-
soning about recovery mechanisms. However, it is not a realistic model as it does
not account for instruction reordering and the optimizations present in real-world
persistent memory systems

Persistent Total Store Order. In this thesis, we will use the terms persistent TSO
and Px86 interchangeably. The persistent TSO model (Fig. 1.2) reflects fully the
Px86 complexity. The persistent TSO model addresses the limitations of the per-
sistent SC model by considering the following aspects: 1) Unlike persistent SC,
the persistent TSO model takes into account the total store buffers of TSO. These
buffers introduce reordering possibilities for writes and play a crucial role in the
consistency of the memory system. 2) The persistent TSO model recognizes that
controlling the persistence mechanism goes beyond synchronous flush instructions.
To elaborate, it considers additional (asynchronous) persist instructions and per-
sist barriers that interact with the underlying memory model, affecting the order
of persists and, thus, the expected content of persistent memory.

The persistent TSO model reflects the Px86 architecture. Our comprehension of
this model was primarily obtained by studying the work of Raad et al. [122]. In
this work, the state comprises three components: the thread-local store buffers,
the global (volatile) persistent buffer, which represents volatile memory, and the
global persistent memory. In the proposed semantics, the point at which a write
exits the store buffer corresponds to when it becomes globally visible, whereas
the point at which it exits the persistent buffer corresponds to when it becomes
persistent. Although these semantics may align more closely with our intuition,
our work builds upon the view-based operational semantics proposed by Cho et
al. [32]. The Px86view model which has been shown to be equivalent to Px86
enables one to abstractly reason about underlying architectural complexities in
terms of timestamps, resulting to a simpler state.

1.3 Thesis Objective

This thesis concerns the verification of persistent software transactional memory. Soft-
ware Transactional Memory (STM) provides programmers with an easy-to-use synchro-
nization mechanism for concurrent access to shared data. In brief, STM is a programming
construct that allows one to specify blocks of code as transactions, with properties of
database transactions (e.g., atomicity, consistency, and isolation) [70]. Atomicity ensures
that all changes to data inside a transaction, are performed as they are a single operation
- either all occur (commit), or none occur (aborted). Consistency ensures that a system’s
data remains in a valid state before and after the transaction. According to isolation,
multiple transactions can execute concurrently without interfering with each other. In
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other words, each transaction must be executed as if it were the only transaction in the
system. While locking-based algorithms can scale well, their design can often be chal-
lenging. In contrast, STM provides a better balance between scaling and implementation
effort.

There are two main challenges when developing concurrent algorithms under persistent
weak memory models such as Px86. 1) The first challenge concerns thread synchroniza-
tion. This difficulty is introduced by the fact that in the relaxed memory context, a read
of a shared location may not return the location’s last written value. 2) The second
challenge concerns durability (persistency). Without placing correctly explicit persist
instructions in the algorithm and the careful design of a recovery mechanism, there is
no guarantee on which values are visible in memory after a system crash. In this thesis,
the term recovery mechanism/process refers to the set of actions taken following a crash
to restore the computer system to a consistent state. While the specifics of the recovery
mechanism can vary based on the nature of the crash, here we are primarily interested
in describing the recovery mechanism in terms of its impact on the underlying memory
model, without delving into any technical details.

Persistent STMs can help address both challenges by providing not only a way for thread
synchronization, but also a high-level mechanism for managing durability and ensuring
failure atomicity. In this manner, by utilizing persistent STMs, programmers can be
liberated from the burden of comprehending and accurately placing low-level persist
instructions within their programs in order to not compromise correctness. Despite the
extensive literature on the implementation of persistent STMs [17, 83, 95, 106, 125, 141,
142,150], the verification aspect has received relatively little attention, with most relevant
works primarily relying on informal correctness arguments e.g. [37,66,124]. Here, we are
trying to narrow this research gap by formalizing persistent transactional memory and
showcasing formal verification techniques for establishing the correctness of transactional
memory implementations.

Research question: To summarize, this thesis addresses the following research ques-
tions: Firstly, what does it mean for a persistent transactional memory algorithm to be
correct, and how can this notion of correctness be formalized? Secondly, how can we
effectively verify persistent transactional memory algorithms, and to what extent can
existing verification techniques developed for volatile memory algorithms be applied in
this context?

To this end, we have been focusing here on two goals.

I. Defining correctness in the context of persistency

One of the main challenges in verifying persistent transactional memory lies in defin-
ing correctness in a manner that encompasses the unique characteristics of persistent
memory. In this work, we define correctness in terms of persistency at two different
levels.

• We begin by defining correctness at the level of transactional memory. Our defi-
nition merges concepts from both the research areas of transactional memory cor-
rectness and concurrent object correctness in the context of persistency.

• We then define correctness at the language level. Our point of departure for this
task is the theory of Owicki–Gries [114], which is widely used for reasoning about

17



safety properties. We preferred the Owicki–Gries method over a concurrent sep-
aration logic [26, 58, 89, 138, 139] or a modal logic [3, 16, 33, 108] approach for two
reasons. The first reason concerns its simplicity, which reduces the modeling and
mechanization effort. The second reason is that it has been shown to work well
with weak memory models [39, 96,146].

Throughout this thesis, we use the Owicki–Gries method to reason about the safety
of our programs’ invariants (annotation) in terms of local correctness and interfer-
ence freedom. Our perspective on safety requirements regarding persistent mem-
ory programs has evolved over time. In our initial work, we use the Owicki–Gries
method in its original form to reason about our transactional memory implemen-
tation within the persistent SC model. However, in our subsequent work, we go
beyond mere local correctness and interference-free properties. We also require our
programs’ invariants to preserve an additional property (crash invariant), which
describes the state of the persistent memory up to the first crash of the program.
Later we further refine the notion of the crash invariant by defining it as a collec-
tion of properties that are maintained by all program transitions, including those
of the crash and the recovery operation.

II. Applying formal verification techniques for showing correctness in the
context of persistency

Our next challenge entails employing formal verification techniques to show that our
transactional memory implementations align with the notions of correctness specified
above, ensuring, in this way, strong guarantees.

In both of our STM implementations, we formulate program invariants as Hoare triples [74].
While it is relatively straightforward to form assertions that describe the persistent SC
state, forming meaningful assertions over the Px86view state requires careful handling.
To this end, we have developed a Hoare logic comprising assertions specifically designed
for the equivalent to the Px86, Px86view model. These assertions enable us to express
relationships between different system components, including persistent memory. Our
logic is largely inspired by prior work on the RC11 model [39].

To show that our STM implementations under the SC and the Px86view model are correct,
we employ a methodology that has been used successfully to verify multiple concurrent
programs [35, 44, 45, 47, 49, 50, 71]. The first step of the methodology involves modeling
both the permissible behaviors (specification) according to our persistent STM correct-
ness condition and the provided STM implementation as transition systems. The second
step concerns demonstrating that the given implementation model refines the specifica-
tion model via simulation proof techniques. The strength of this approach lies in its
ability to enable hierarchical reasoning. Once we establish that our specification model
implies our correctness condition, we reuse it to demonstrate correctness for both of our
STM implementations.

1.4 Structure of the Thesis

Chapter 2 concerns background work. It first provides a high-level description of the
persistent memory architecture. It then proceeds with presenting a set of definitions for
formalizing Software Transactional Memory and an overview of the background work
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concerning correctness conditions for Software Transactional Memory and concurrent
objects in the context of persistency.

In Chapter 3, we demonstrate a refinement proof that establishes the correctness of a per-
sistent STM implementation under persistent SC. We begin by presenting a correctness
condition, durable opacity, which adapts opacity [67] to the persistency setting. After-
ward, we provide operational semantics for the persistent sequential consistency model.
We then develop a persistent STM implementation, dTMLSC, which constitutes an adap-
tation of the transactional mutex lock (TML) algorithm [38] to handle system crashes.
Subsequently, we introduce an operational characterization of durable opacity, dTMS2,
which is based on the TMS2 specification that has previously been demonstrated to im-
ply opacity [50]. Finally, we present a proof technique to show that our implementation
is durably opaque. Our mechanized proof involves encoding dTMS2 and dTMLSC as
IO-automata within the Isabelle/HOL proof assistant. We then establish the existence
of a forward simulation, which has been demonstrated to ensure trace refinement of IO-
automata according to Lynch et al. [103]. This, in turn, guarantees the durable opacity
of dTMLSC.

Chapter 4 presents a program logic for reasoning about x86 code that uses low-level
operations such as memory accesses and fences, as well as persistency primitives such as
flushes. Our logic benefits from a simple underlying operational semantics for the Px86
model based on views [32], and is mechanized in the Isabelle/HOL. We first present the
equivalent to Px86, Px86view model, suggested in [32] and the corresponding operational
semantics. Afterward, we detail our Owicki–Gries logic, Pierogi. We develop two
versions of Pierogi, the first version (Pierogisimp) supports reasoning up to the first
crash of a program while the second version (Pierogifull) supports reasoning beyond
crash events. Next, we present the Pierogi proof rules and prove that they are sound.

In Chapter 5 we utilize the Pierogisimp logic to verify several litmus tests. In this way,
we demonstrate how Pierogisimp can be used to reason about a range of challenging
single- and multi-threaded persistent programs.

In Chapter 6, we demonstrate a refinement proof that establishes the correctness of a
persistent STM implementation under the Px86 model. Firstly, we develop a persistent
STM implementation, dTMLPx86, which is once again an adaptation of TML but with
additional synchronization mechanisms to cope with Px86. Subsequently, we present a
proof for showing that dTMLPx86 is durably opaque. Our correctness proof is operational
and comprises two distinct types of proofs: (1) proofs of invariants of dTMLPx86 and
(2) a proof of refinement against an operational specification that guarantees durable
opacity. For (1), we build on the revised version of Pierogi, and for (2) we use the
simulation-based technique presented in Chapter 3.

Chapter 7 includes a discussion of the preceding chapters and suggestions for future
work.
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Chapter 2

Preliminaries

This chapter presents preliminaries regarding the persistent memory architecture and
software transactional memory.

2.1 Overview of Hardware

In this section, we begin by presenting a high-level overview of the hardware features of
Intel’s x86 persistency model. More specifically in §2.1.1, we provide a concise description
of the modes in which persistent memory can be utilized. Following that, we discuss
the concept of power-fail protected domains (§2.1.2) and analyze the different methods
through which a write can be persisted (§2.1.3). Finally, in §2.2, we discuss a selection
of persistency models.

2.1.1 Persistent Memory Modes

Persistent memory can be utilized in two memory modes, each with its unique architec-
tural characteristics and operating system handling. Both modes comply with the SNIA
NVM Programming Model, which is a guideline for how the operating system interacts
with persistent memory. These modes offer a number of paths from the user space to the
NVDIMMs with each path implying distinct persistent memory programming interface
semantics. A brief summary of the modes can be found below.

2.1.1.1 Memory Mode

Under memory mode, persistent memory (e.g., Optane DC Persistent Memory) appears
to the operating system as traditional volatile memory, allowing it to be used as the
main memory for data that needs to be persisted. DRAM in this case is used as a
direct-mapped write-back cache for persistent memory, meaning that it is not directly
accessible from the user interface and cannot be explicitly controlled by the operating
system. In this mode, writes are automatically buffered in DRAM which is essential for
preventing performance degradation caused by a limited write bandwidth to NVDIMMs.
Data placement on NVDIMMs is managed by the memory controller, which aims to
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Figure 2.1: A high-level view of the hardware configuration of a system operating in
Memory mode.

reduce the write latency gap between DRAM and NVDIMMs. One disadvantage of this
design is that DRAM can only cache access to the NVDIMMs connected to the same
memory controller [82], leading to non-uniform memory access (NUMA) effects [63].
Furthermore, the operating system needs to handle the data durability, as data in this
mode do not automatically persist.

A simplified depiction of a system in Memory mode can be found in Fig. 2.1. As il-
lustrated, typically, a system that displays Intel-x86 architecture can have one or more
cores. Its core is connected to a local store buffer, which holds data before they are
written to the cache RAMs. The store buffer is organized as a FIFO queue. While in the
store buffer, data are only visible to the core that is connected to it. When data leave
the store buffer, they enter the CPU cache which typically has three or more distinct
levels. Usually, the caches that are nearer to the CPU cores are faster, smaller, and local
to their core, while those that are farther away are larger in capacity and unified across
all cores. The way data propagates through the CPU cache hierarchy is determined by
several factors that may differ among systems, such as cache block size, associativity,
replacement policy, writing policy, etc. The final level of the CPU cache is connected
to one or more memory controllers, each of which has one or more memory channels.
These memory channels are, in turn, connected to one or more DIMMs, which form a
direct-mapped write-back cache. Additionally, each memory channel is also connected
to one or more NVDIMMs where data reside after being evicted from the DRAM cache.

In the case of a read, the processor first searches for the desired data in the store buffer,
and if the data are not found, it proceeds to search the next memory layers (i.e. CPU
cache memory levels, DRAM cache, persistent memory) until it succeeds. In the case of
a write, the desired data are first written to the store buffer. They are then propagated
through the CPU cache hierarchy, and finally, they reach the DRAM cache. After being
evicted from the DRAM cache, they are written to persistent memory.

When there is a need for cost-effective memory expansion, using NVDIMMs (in Memory
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Figure 2.2: A high-level view of the hardware configuration of a system operating in App
Direct mode.

mode) can be advantageous as they are cheaper than standard DIMMs and offer greater
storage capacity. One additional benefit of this approach is its ease of integration with
the system, requiring minimal effort due to its almost "Plug and Play" capability [59].
According to [149], a good indication that an application will perform well in memory
mode is whether its working set (data that are used frequently during execution) fits
inside the DRAM capacity. If so, the frequently used data can be accessed fast through
the DRAM cache, while the remaining data reside in the persistent memory. Intel rec-
ommends a DRAM-to-persistent-memory ratio of 1:4.

2.1.1.2 App-Direct Mode

In App Direct mode, the Optane DC PMMs are exposed to the operating system as
persistent block devices. Contrary to the Memory mode, there is no DRAM cache.
By allowing the system to independently manage the DRAM and DC PMM resources,
App Direct mode enables operations that require high speed to use DRAM, while less
performance-demanding operations can utilize the DC PMMs. When a file system that
supports PMem direct access (DAX) is available, file read/write operations can be trans-
lated into cache-line load/store instructions (64 bytes), enabling much more fine-grained
data access than block-based access (usually 4k bytes), which is commonly used for stor-
age [143,148]. Moreover, the DAX feature enables accessing persistent memory directly
from the user space.

Fig. 2.1 shows a high-level view of a system in App Direct mode. As illustrated, DIMMs
(DRAM) and NVIDMMs (DC PMMs) are now at the same level and can both be ac-
cessed at the system’s discretion. When a cache line is evicted from the CPU cache, its
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Figure 2.3: The software path in App Direct mode.

stored data enter the memory controller. The memory controller, among other features,
maintains a write pending queue (WPQ), which temporarily holds the cache line stores.
Stores are later pulled from the write pending queue and are sent to an NVDIMM in
cache line (64-byte) granularity. Each NVDIMM has its own on-DIMM controller, which
controls access to the Optane media by implementing an internal address translation.
Upon the completion of the translation, stores access the Optane physical media in 256-
byte (Optane block) granularity [147]. The disparity in access granularity (64-byte for
the WPQ entry against 256-byte for the Optane block) causes write amplification where
small stores become read-modify-write operations. The above, in turn, results in higher
write latency compared to read latency. To mitigate this issue, the Optane controller
maintains an on-DIMM write buffer that merges small adjacent writes [148].

Fig. 2.3 depicts a simplified version of the software stack as demonstrated in [129]. As
illustrated, there are four different ways that persistent memory can be reached. The
first way of using persistent memory was as a block storage device (red and green paths).
To achieve this, the operating system was extended to detect the existence of persistent
memory and support a persistent memory driver (NVDIMM Driver) which functions
exactly as a storage device driver, with the addition that it can configure and monitor
the state of persistent memory. As with traditional storage, applications can access
persistent memory either directly or via the file system. The file system, in this case,
continues to support standard file APIs, and the process of updating persistent memory
through the file system remains the same as with block storage devices.

In brief, the most efficient way for an application to read from or write to a file is by
memory mapping it. This is typically done with an mmap() system call in Linux or
MapViewOfFile() in Windows. The mmap() / MapViewOfFile() call maps the file onto
the virtual memory of the application’s address space, enabling users to access the file
directly in the same way as data on the memory. The virtual memory and main memory
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(DRAM) are partitioned into virtual and physical pages of the same size, while the
storage device is partitioned into blocks. Both load and store instructions operate on
virtual addresses, which are translated to physical addresses on the fly by the Memory
Management Unit (MMU).

The operating system is responsible for managing I/O operations by maintaining the
page cache. In the case of a read, if the virtual address corresponds to a location in the
program or to a data space that is mapped to a page in the main memory, the contents
of the corresponding main memory location are immediately accessed. However, if the
location is mapped to storage space, an exception is generated (page fault), and the
operating system takes control to retrieve the requested word from the storage, which
takes a significantly longer time. After fetching the corresponding storage block, it copies
it to a page in the main memory (page cache). In this way, future references to the same
address can be resolved in less time, as the requested data can be retrieved directly
from the page cache. If all physical pages of the page cache are already occupied, the
operating system is in charge of deciding which one to replace (LRU, FIFO, etc.). The
low-level application programmer may not be aware of the limitations imposed by the
limited physical memory available and how they are managed by the operating system.

In the case of a write, the operating system stores the new content in the corresponding
page of the page cache. At some point, when the page cache is full, the page is writ-
ten back into the storage device (lazy update). Only then is the new written content
considered to be persistent. In order to ensure that data has been persisted before a
system failure, an application can issue a system call (e.g. fsync()/msync() in Linux or
FlushFileBuffer()/FlushFileBuffers() in Windows) that guarantees that the con-
tent of the provided file has been written back to the block storage.

This approach has two significant drawbacks: 1) updating the storage in page granularity
makes both page faults and writing back to storage expensive, and 2) the main memory’s
available space is constantly reduced as it retains a copy of the files in the page cache.
To avoid these drawbacks, the operating system was extended to support pmem-aware
file systems. A pmem-aware file system has two ways of updating the persistent memory
(blue paths). The first way is by using the NVDIMM driver and thus following the
process described previously. The second way is by using the direct access (DAX) file
system feature, which allows it to access the persistent memory directly. When DAX is
supported, mmap()/ MapViewOfFile() can map persistent memory directly into the user’s
address space. System calls such as fsync() work as expected, but the kernel handles
persistent memory differently. Instead of writing back pages to storage, it utilizes newly
supported explicit persist instructions that can update persistent memory at a cache line
granularity. As before, when a file is mapped, its data are not necessarily persistent. On
typical storage, a file becomes persistent when the relevant dirty pages are flushed out of
the page cache to the block storage. In this case, in which direct access is possible, the
newly written data, instead of being in the page cache, are located in the CPU cache.
The new explicit persist instructions, instead of flushing pages from the page cache, flush
CPU cache lines from the CPU cache to persistent memory. Bypassing the page cache
boosts the overall performance significantly by taking advantage of the dual nature of
persistent memory, which is accessed nearly as fast as DRAM memory but functions like
storage.

The last extension of the operating system provides the option to the user to bypass
almost completely the kernel code (file system) and handle persistency entirely from the
user space (yellow path). Essentially, after exposing persistent memory to the application
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as a memory-mapped file (the initial mappings are still managed by MMU), a program-
mer can use the explicit persist instructions to flush cache lines directly into persistent
memory. This alternative use is possibly a tradeoff between programming complexity
and flexible, more efficient persistent memory handling.

Despite providing the shortest path to persistency, this option places the burden of
determining which metadata to persist, in which way, and how frequently to do so in
order to maintain consistency of data structures in the event of a crash ( failure atomicity)
on the programmer. Such a task is not trivial since algorithms that do not adhere to
failure atomicity are indistinguishable from those that do during normal execution. This
is due to the fact that in either scenario, the critical data are eventually made persistent
through the applied cache coherence protocol. Therefore, without rigorous testing, failure
atomicity is only detectable after a system crash, such as a power outage.

In summary, a programmer who accesses persistent memory from user space has to deal
with the following challenges:

Out-of-order persisted stores: Dirty cache lines that are flushed by cache replace-
ment mechanisms, do not ensure persistent memory consistency. Essentially, stores
may reach the persistent memory in a different order than the order in which they
were issued by the CPU. Persisting stores in arbitrary order leads to inconsistent
persisted data. Store reorderings of similar nature have been studied in detail for
preserving memory consistency under weak memory models (TSO, C11 etc). How-
ever, those reorderings concern the different to the issued order in which stores are
made visible to other threads (exit the per-core store buffers), and not the order in
which cache lines are evicted. Proposed persistency models [117, 121, 123], aim to
describe the order in which stores persist, under different hardware assumptions,
providing in this way persistent memory order guarantees to the programmer. Plat-
form vendors such as Intel, ARM, and AMD support available from the user space
explicit persist instructions, allowing in this way the users to afford greater control
over the persistency order.

Non-atomic persistent updates: Even though stores are reaching persistent mem-
ory on a cache line granularity, on Intel hardware, the atomic store is 8 bytes. As
a result, the size of stores that reach the persistent memory in an atomic manner
is less than or equal to 8 bytes. In the case that a crash event interrupts a store
with a size less than or equal to 8 bytes, persistent memory either contains the
previously written or the newly written 8 bytes, but not a mix of both. Stores over
8 bytes, without special handling, might be torn after a system crash. However,
most data structures utilize larger than 8-byte datatypes and thus require larger
atomic updates. To prevent the possibility of an incomplete update caused by a
system crash, the software cannot rely on a single instruction. Instead, the up-
date must be made transactional by building on the 8-byte power-fail-atomic store
in combination with the explicit persist and possibly persist barrier instructions
provided by the hardware.

Asynchronous explicit persist instructions: The majority of the provided explicit
persist instructions are asynchronous (i.e. they are not blocking the execution of
following instructions until they are complete). Since the effect of those instruc-
tions might take place later than the time they were issued, they cannot provide
any guarantee that the data of the address they flush reaches persistent memory
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unless they are used in conjunction with persist barrier instructions (in the case of
Intel sfence, mfence, CAS). A persist barrier is a mechanism for enforcing ordering
on the stores that reach the persistent memory by ensuring that the stores pre-
ceding it persist before those that follow it. Each explicit persist instruction has
its own performance characteristics and should be preferred in different scenarios.
For example in Intel-x86 architecture, the clwb instruction performs better than
clflushopt in cases where future accesses to the flushed data are expected. As an-
other example, according to [12], clwb performs better in redo log implementations
while clflushopt performs better in undo log implementations. The programmer
needs to decide carefully which instruction to use and place it in the program such
that durability is not risked while performance is maximized.

The first requirement when handling persistent memory directly from the user space is
the detection of the responsibilities of its entity towards flushing critical data to persistent
memory media and recovering them after a power loss/crash. The concept of a power-fail
protected domain (persistence domain) helps in the assignment of these responsibilities
to the hardware platform or the application. A power-fail protected domain is a memory
area whose stored data are assumed to be flushed by the hardware platform. As soon as
the data reach a power-fail-protected domain, even if they haven’t reached the persistent
media before a system crash, they are assumed to be recoverable. Persistence domains
may vary from system to system. In general, larger power-fail protected domains suggest
less responsibility for applications regarding flushing. We briefly analyze Intel’s power-
fail-protected domains and flush instructions in the next sections.

2.1.2 Power-Fail Protected Domains in App Direct Mode

Intel supports two DRAM refresh features: ADR (Asynchronous DRAM refresh) and eADR
(enhanced Asynchronous DRAM refresh). Each of those suggests a different persistence
domain. Fig. 2.4 provides an illustration of the persistence domain for the two DRAM
refresh modes.

The persistence domain for ADR includes only the (volatile) controller’s write pending
queue (WPQ) and the NVDIMMs (represented by the deep grey square of Fig. 2.4). The
persistence domain for eADR also includes the CPU cache (represented by the light grey
square of Fig. 2.4). In both cases, once a store reaches the boundary of the specified
persistence domain (either the memory controller for ADR or the CPU cache for eADR), it
is guaranteed to persist even in the event of a system crash. This is because the ADR\eADR
feature introduces to the system an amount of reserve power, usually in the form of an
external battery, which is sufficient to flush the in-flight stores to persistent memory in
the case of a power outage.

The persistence domain has a significant impact on the complexity of the programming
model. As shown in Fig. 2.4 when eADR is supported, the point at which a store becomes
visible to other threads (PoV) coincides with the point at which it is assumed to be
persistent (PoP). This implies that the consistency model specifies both the volatile and
persistent memory orders. As a result, the application does not need to handle explicit
flushes and only needs to maintain memory consistency. On the other hand, when
ADR is supported, the point of visibility for a store differs from the point of persistency,
making the programming model harder, as in this case failure atomicity is decoupled from
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colour.
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memory consistency. The main challenge with eADR lies in the large size of CPU caches,
which require more energy (e.g., larger batteries) to be sustained. Larger batteries result
in more expensive and less environmentally friendly designs. A possible alternative that
provides the same durability guarantees as eADR is demonstrated in [6]. The proposed
design, instead of requiring a battery-backed cache, only requires a smaller battery-
backed buffer. The stores in this design are duplicated. The duplicate stores enter the
buffer (upper boundary of the persistence domain) and the CPU cache simultaneously,
making their points of persistency and visibility aligned. This thesis focuses on systems
that support the ADR feature, as ADR is more widely supported compared to eADR.

2.1.3 Flushing in App Direct Mode

Fig. 2.4 illustrates the possible ways in which a store can pass through the levels of the
memory hierarchy. The instructions analyzed here are specific to the Intel-x86 architec-
ture.

Stores in Intel-x86 are implemented with the mov instruction (mov dest src). A store is
typically first added to the core’s FIFO store buffer. By default, when the store exits the
store buffer, it enters the CPU cache. There are many ways in which the stores contained
in a cache line can reach the memory controller.

1) Cache replacement mechanism: This method relies on the natural occurrence
of a cache line eviction due to the cache coherence protocol. However, it does not
provide any guarantee regarding whether or when a cache line will eventually make
its way to the memory controller.

2) Explicit persist instructions: The explicit persist instructions (clflush addr,
clflushopt addr, clwb addr), can be called from the user space, and their function
is to flush from the CPU cache all the addresses of the cache line of the provided as
argument address addr. As mentioned previously, the explicit persist instructions
are executed in an asynchronous manner, permitting their effects to be reordered
to a later point in the program execution. However, the behavior of clflush is
identical to that of a synchronous instruction (with the exception of subsequent
clflushopt instructions on different cache lines and load instructions to which it
is not ordered) due to the greater number of ordering constraints that it imposes
[122]. The clflushopt and clwb instructions present equivalent behavior and im-
pose the same ordering constraints. Their main difference is that while clflushopt
invalidates the cache line that persists (similar to clflush), the clwb instruction
does not. The above makes clwb preferable in scenarios where reads exceed writes.
In contrast to clflush, both clflushopt and clwb do not provide any durability
guarantee without being combined with a persist barrier (in the case of Intel-x86,
sfence, mfence, CAS). The store fence (sfence) instruction guarantees that at
the end of its execution, the pending flushes of previously issued clflushopt and
clwb instructions reach the persistence domain (as specified by ADR). The compare
and swap (CAS) and memory fence (mfence) instructions are stronger than the
(sfence) and thus provide the same durability guarantee compared to the store
fence instruction.

3) NT stores: A non-temporal store is a type of memory access operation that does
not require the use of the CPU cache, which is typically designed to optimize
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mov x 1;
clflush x;
mov y 1;
clflush y;
pcommit;
sfence;
mov z 1;

(a)

mov x 1;
clflush x;
mov y 1;
clflush y;
mov z 1;

(b)

mov x 1;
clflushopt x;
mov y 1;
clflushopt y;
sfence;
mov z 1;

(c)

mov x 1;
mov y 1;
mov z 1;

(d)
None ADR ADR eADR

Figure 2.5: Four programs with equivalent behavior under different hardware assump-
tions (persistence domains).

access times based on the temporal locality. As a non-temporal store bypasses the
CPU cache, it directly reaches the persistence domain (as specified by ADR). Non-
temporal stores are often used in applications that involve large amounts of data
that are accessed in a sequential or non-repetitive manner. Non-temporal stores
can improve the overall performance by reducing cache pollution.

4) WBINVD: The WBINVD instruction flushes the entire CPU cache and inval-
idates every cache line. This instruction is only accessible to the kernel and is
typically used by the operating system during a system shutdown to ensure that
all stores to persistent memory have reached the persistence domain and any stale
data is cleared from the cache before the system loses power.

5) eADR: As mentioned before, when eADR is supported, any store after exiting the
store buffer is assumed to be persistent. Therefore, there is no need for explicit
flushing of cache lines.

Typically, ADR is the minimum platform requirement for systems that support persis-
tent memory; thus, in most cases, there is no need for explicit flushing of the memory
controller’s write pending queue (WPQ). However, a platform still has a way to flush
the WPQ using the wpq flush kernel-only feature. Before ADR became standard, the
persistence domain included only the NVDIMMS. The flushing of WPQ was performed
by the pcommit instruction. The pcommit instruction is asynchronous, so its comple-
tion is guaranteed only after the execution of an sfence. Since the ADR feature became
prevalent on Intel’s platforms, the pcommit instruction has been deprecated [128].

Fig 2.5 demonstrates four programs that yield the same durability guarantee under dif-
ferent persistence domains. Specifically, if z is equal to 1 in persistent memory, then x
also equals 1, and y equals 1 in persistent memory (z = 1 ⇒ x = 1 ∧ y = 1). Example
2.5a assumes a platform with neither ADR nor eADR supported. Firstly, the value 1 is
written to address x. The clflush x instruction afterward flushes (evicts) the cache line
of address x from the cache to the memory controller. Since clflush is ordered with
respect to subsequent writes, its effect takes place before the write of 1 to address y.
Afterward, the write of 1 to address y is executed, and the cache line that it belongs
to is flushed (clflush y) to the memory controller. The pcommit instruction flushes
the accepted to persistent memories stores (i.e. the stores that are in the write pending
queue (WPQ) of the memory controller) to the NVDIMM. The effect of pcommit will
surely take place by the completion of the sfence execution. Finally, 1 is written to
address z. If mov z 1 has executed and persisted before a crash, then so must all the
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preceding instructions. Thus, if a crash occurs during the execution of this program and
upon recovery z = 1 then x = 1 and y = 1.

The next two examples assume a platform with ADR supported. Here the programming
model is simpler, as ADR relieves the application from flushing the controller’s write
pending queue. Due to this, there is no need for the pcommit instruction. The differ-
ence between examples 2.5b and 2.5c is that while the first uses the strongly ordered
clflush , the second uses the less strongly ordered optimized flush instruction. To elab-
orate, in 2.5c the effect of clflushopt x might take place after the subsequent mov y 1
and clflushopt y if the cache line for address x is not the same as the cache line for
address y. However, the effect of both optimized flushes takes place not later than the
completion of the sfence instruction. As before, if the mov z 1 instruction has executed
and persisted before a crash, then x = 1 and y = 1 in persistent memory upon recovery.

Assuming an eADR supported platform, example 2.5d follows a simpler programming
model as explicit cache line flushing is not necessary. The self-ordering of the mov in-
struction ensures that the stores in 2.5d are executed and persisted in the order they
are issued. When eADR is supported, the persistency order is determined by the volatile
(visibility) order.

The scope of this thesis pertains to systems in App Direct mode (Fig. 2.2) that support
ADR. We are mostly concerned with the verification of programs that handle persistency
from the user space (yellow path of Fig. 2.3). The semantics and program logic given
in later chapters concern only a subset of the flushing mechanisms demonstrated here.
Specifically, we are concerned with programs in which flushing is either occurring through
the cache replacement mechanism or with the use of explicit persist instructions com-
bined, when necessary, with persist barriers.

Pelley et al. [117] proposed the use of persistency models to establish the persistency
semantics of programs. These models dictate the acceptable behaviors of programs upon
recovery by specifying the sequence in which writes should be persisted in memory. The
next section provides a description of the most prevalent persistency models.

2.2 Background work on Persistency Models

This section starts by summarizing the classification of persistent memory models and
describing certain models as proposed in [117] ( 2.2.1). The memory models discussed
here are not used in the remainder of the thesis. However, we still think they are
important for comparative analysis with Intel’s persistency model (Px86 model), which
we formalize and verify in later chapters. In §2.2.2, we introduce the Px86 persistency
model and summarise some alternatives to ours, formalizations of Px86.

2.2.1 Persistency Models proposed in [117]

In [117], the problem of ordering persists is parallelized with the problem of ordering
volatile memory accesses. The proposed persistent memory models leverage existing
memory consistency models such as Total Store Order (TSO) and Relaxed Memory
Order (RMO).
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As discussed in [122], persistency models can be classified based on two criteria: (1)
strict versus relaxed, and (2) buffered versus unbuffered. Under strict persistency, the
order in which instruction effects become globally visible coincides with the order in
which they persist. Relaxed persistency allows the above orders to differ. The second
classification pertains to the timing of persists. In unbuffered persistency, persists occur
synchronously, meaning that the effects of an instruction are immediately committed
to persistent memory during its execution. On the other hand, buffered persistency
enhances performance as it allows instructions to persist asynchronously without stalling
the execution. In this approach, persists take place after their corresponding stores, so
the execution may continue ahead of persists. As a result, in the event of a crash and
subsequent recovery, it is possible that only a prefix of the persistent memory order has
been successfully persisted. The Intel-x86 architecture follows a buffered persistency
model.

The below presentation of Pelley’s persistency models follows the formalization suggested
in [93]. The term "persist" is used to describe the durable writing of a store to persistent
memory, which we assume to occur atomically (with respect to failures) at an 8-byte
granularity. The term "thread" refers to a core or a hardware thread. The formalization
involves order relations between memory events, namely loads and stores, which are col-
lectively referred to as memory accesses. The notation Bi

l denotes a memory access from
a thread i to the location l. The volatile memory order (VMO) describes the ordering
relation between memory accesses as imposed by the consistency model. The persistent
memory order (PMO) includes the same events, though the order is determined by the
constraints introduced by the persistency model. We denote as Bi

l1 ≤VM Bj
l2 the order-

ing relation in which the memory access Bi
l1 happens before or at the same time as the

memory access Bj
l2 in VMO. Similarly, Bi

l1 ≤PM Bj
l2 denotes the ordering relation in

which the memory access Bi
l1 happens before or at the same time as the memory access

Bj
l2 in PMO.

Strict persistency. Under strict persistency, the order of the events in persistent
memory is the same as the order of those in the volatile memory. Persistent models that
follow strict persistency rely entirely on the volatile memory consistency model to set
the order of the persistent events.

Bi
l1 ≤PM Bj

l2 ⇔ Bi
l1 ≤VM Bj

l2 (2.1)

The volatile memory order can be either a conservative consistency model such as se-
quential consistency (SC) or a relaxed consistency model (RMO, TSO, etc.).

A program satisfies SC [98] if its execution result can be obtained by maintaining the in-
structions’ order within each thread while interleaving instructions from different threads
in any arbitrary but global manner across all the threads. On the contrary, relaxed con-
sistency models, allow loads/stores inside a thread program to be reordered. Strict
persistency simplifies the problem of persistent memory ordering, as reasoning about the
volatile memory order tackles both problems.

Implementing strict persistency can lead to frequent execution stalls. This is because in
the case of SC every time a store is executed, the CPU should wait for the counterpart
NVDIMM write to complete. Flushing stores in persistent memory in the order they
are issued, conflicts with two hardware optimizations. Firstly, stores in a cache line are
coalesced and, when not explicitly flushed, reach the persistent memory on a cache line
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replacement. Inserting a clflush instruction after every store prevents coalescence,
resulting in unnecessary write-backs. Secondly, processors rearrange the persistence of
cache lines to enhance performance by leveraging temporal and spatial locality. This
rearrangement takes place in both caches and memory controllers. Nevertheless, in strict
pesistency, cache lines must be flushed in program order which eliminates any potential
performance benefits from reordering writes in memory. Respectively, under relaxed
memory consistency models every time a memory barrier is encountered, imposing an
ordering constraint on the visibility of stores, the CPU should also stall until the stores
prior to the memory barrier have reached the NVDIMMs. Strict persistency can be
either implemented by software (putting persist barriers and explicit persist instructions
in place) or hardware (e.g. eADR, [55, 84])

An optimization of strict persistency is buffered strict persistency in which the pro-
gram execution can be ahead of the persistent state. As far as the visibility of the
recovery process is concerned, it is allowed to view any past memory state, given that it
is consistent. An instance of a hardware strict persistency implementation is DPO [94]
which expands the cache-coherence protocol by integrating persist-buffers. The persis-
tent buffers keep track of persistent requests and fences from their corresponding cores
in order to identify persistent dependencies within a thread. They also monitor cache
coherence traffic to identify persistent dependencies between threads.

Relaxed persistency. According to relaxed persistency, the order of the events in
persistent memory may differ from the order of those in volatile memory. In this case,
memory, and persistency barriers should be handled separately.

Memory barriers ensure that all the threads view the same ordering of memory oper-
ations, while persistency barriers specify the acceptable persists orders that are only
visible from the recovery process. Relaxing persistency may complicate reasoning for the
correctness of persists’ ordering. However, it might improve performance due to fewer
execution stalls. Below is a brief description of some relaxed persistency models. Both
models outlined, respect strict persist atomicity, which builds on store atomicity. Store
atomicity ensures that stores on the same memory address can be serialized. This prop-
erty can be induced by cache coherence. Similarly, persist atomicity guarantees that
persists in the same address can be serialized.

• Epoch Persistency: Under epoch persistency, volatile memory satisfies sequential
consistency. Each thread can issue persist barriers. Persist barriers divide the
thread’s execution to persist epochs. Memory accesses that belong to different
epochs in volatile memory order are ordered in persistent memory. In the following
relation, PBi denotes a persist barrier of the thread i.

Bi
l1 ≤VM PBi ≤VM Bi

l2 ⇔ Bi
l1 ≤PM Bi

l2 (2.2)

Persist barriers ensure that the persists of the epoch before the barrier never happen
after the persists of the following epoch. Persists inside each epoch can happen
concurrently and do not need to be serializable. However, this approach intro-
duces complexity in determining the sequence of events, particularly when different
threads access the same memory address. To maintain coherence persists on the
same address must adhere to their execution order, thereby ensuring strict per-
sist atomicity. The feasibility of epoch persistency has been explored in a number
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of works, such as [36, 85, 94]. These articles have investigated different imple-
mentations of persist barriers and have shown that they can provide performance
improvements over alternative models.

A variation of epoch persistency is buffered epoch persistency according to
which execution is allowed to continue beyond an epoch until encountering an
epoch conflict. An epoch conflict arises when a location is updated in an epoch
without its previous update in a preceding epoch being persisted. An epoch conflict
triggers the explicit flush of all the locations that have not been persisted before
the conflict.

• Strand Persistency: According to this model, program execution is divided into
strands. Strands are logically independent segments of the execution of the same
thread. Since there is no dependency between them, strands of the same thread
behave as different threads. Strands are separated by strand barriers. In the
following relation, SBi denotes a strand barrier of thread i. Persists order within a
strand is imposed by persist barriers. Strand persistency obliges that the persistent
memory access order of any thread should respect Eq. (2.2) if it is not separated
by a strand barrier. In the following relation, SBi denotes a strand barrier of a
thread i.

(Bi
l1 ≤VM PBi ≤VM Bi

l2) ∧ (∄SBi : B
i
l1 ≤VM SBi ≤VM Bi

l2) ⇒ Bi
l1 ≤PM Bi

l2

(2.3)

Following the representation style of [85], Fig. 2.6 shows three execution timelines under
three different persistency models. The first execution represents a sequence of writes
under strict persistency. A depicted, when a write becomes visible to other threads
(visibility line), it should immediately persist. In this scenario, the system effectively
uses the CPU cache in a write-through mode to immediately flush all writes issued by
a thread as soon as they become visible to other threads. The second timeline concerns
a sequence of writes under epoch persistency. In this case, writes within an epoch can
persist in a different order from which they were issued. The program execution stalls
when it reaches an epoch boundary (persist barrier) until all the writes within the epoch
are persisted. Modified cache lines that persisted naturally via cache replacement, are
not explicitly flushed. This model leverages cache coalescence. As an example, there is
no requirement for persisting both stores on address "a" at the end of epoch 1 since they
both belong to the same cache line. As a result, the cache line of address "a" is only
persisted once. Finally, the third timeline concerns a sequence of writes under buffered
epoch persistency. In this case, the execution can continue beyond epochs if there is no
epoch conflict. An epoch conflict arises when an epoch attempts to execute a store on an
address without the previous store on the same address being persisted. In such scenario,
the epoch must explicitly persist all the stores that precede the conflicting store before
continuing its execution. As seen, the store on address "g" by epoch 3, is conflicting with
the previous store in the same address by epoch 2. Epoch 3 flushes all the previous, not
yet persisted, stores before completing the conflicting write.

2.2.2 The Px86 Model

The Px86 model describes the semantics of programs running in systems that display
Intel-x86 hardware including an NVM technology such as Optane DC. In particular, this
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Figure 2.6: Sequences of stores to different cache lines under different persistency models
as presented in [85].

model describes the behaviour of programs that run on App Direct mode platforms that
support ADR.

X86 persistency follows a buffered relaxed persistency model which can be seen as an
extension of the total store order consistency model. As mentioned in §2.1.3, one of
the main challenges that the explicit persist instructions introduce is that there effect is
asynchronous. This way persists occur after their corresponding stores and as prescribed
by the persistency semantics while allowing the execution to proceed ahead of persists.
As such, after recovering from a crash, only a prefix of the persistent memory order may
have persisted.

Under relaxed persistency (§2.2.1), the volatile (VMO) and persistent memory (PMO)
orders may disagree: the order in which the writes are made visible to other threads
may differ from the order in which they are persisted. To distinguish between the two,
in this discussion, memory stores are differentiated from memory persists: the former
denotes the process of making a write visible to other threads, whilst the latter denotes
the process of committing writes to persistent memory (durably).

For the rest of this section, Intel’s mov instruction is denoted as store, the ld instruction
is denoted as load, the clflush instruction is denoted as flush and the clflushopt

35



instruction is denoted as flushopt. Furthermore, the mfence and sfence instructions
refer to Intel’s memory and store fence instructions, respectively, and finally, CAS, as
before, refers to the RMW compare-and-swap instruction. In order to illustrate the
consistency and persistency model of Px86, we provide a recap of examples presented in
Chapter 1 and introduce additional examples.

Px86 Consistency.

The consistency semantics of Px86 is that of the well-known TSO (total store order-
ing) [131] model, where later (in program order) reads can be reordered before earlier
writes on different locations. This is illustrated in the store buffering (sb) example below
(left):

store x 1;
a := load y

store y 1;
b := loadx;

a = 0 ∧ b = 0 : ✓

(sb)

store x 42;
store y 7

a := load y;
b := loadx;

a = 7 ∧ b = 0 : ✗

(mp)

Specifically, assuming x = y = 0 initially, since a := load y (resp. b := loadx) can be
reordered before store x 1 (resp. store y 1), it is possible to observe the weak behaviour
a=0 ∧ b=0. A well-known way of modeling such reorderings in TSO is through store
buffers: when a thread t executes a write store x v, its effects are not immediately
made visible to other threads; rather they are delayed in a thread-local (store) buffer
only visible to t and propagated to the memory at a later time, whereby they become
visible to other threads. For instance, when store x 1 and store y 1 are delayed in
the respective thread buffers (and thus not visible to one another), then a := load y and
b := loadx may both read 0.

After SC (sequential consistency) [98], TSO is one of the strongest consistency models
and supports synchronization patterns such as message passing, as shown in mp above
(right), where a=7∧ b=0 cannot be observed. Specifically, (assuming x=y=0 initially)
if the right thread reads 7 from y (written by the left thread), then the left thread passes
a message to the right. Under TSO, message passing ensures that the instruction writing
the message and all those ordered before it (e.g. store x 42; store y 7) are executed
(ordered) before the instruction reading it (e.g. a := load y). As such, since b := loadx is
executed after a := load y, if a=7 (i.e. store x 42 is executed before a := load y), then
b=42.

Px86 Persistency.

The relaxed and buffered persistency of Px86 is shown in Fig. 2.7a. If a crash occurs
during (or after) the execution of Fig. 2.7a, at crash time either write may have persisted
and thus x, y∈{0, 1} upon recovery. Note that the two writes cannot be reordered under
Intel-x86 (TSO) consistency and thus at no point during the normal (non-crashing)
execution of Fig. 2.7a is x=0, y=1 observable. Nevertheless, in case of a crash it is
possible to observe x=0, y=1 after recovery. That is, due to the relaxed persistency of
Px86, the store order (x before y) is separate from the persist order (y before x). More
concretely, under Px86 the writes may persist 1) in any order, when they are on distinct
locations; or 2) in the volatile memory order, when they are on the same location.1

1Given a cache line (a set of locations), writes on distinct cache lines may persist in any order, while
writes on the same cache line persist in the volatile memory order. As in Chapter 3, we assume that each
cache line contains a single location, thus forgoing the need for cache lines. However, it is straightforward
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store x 1;
store y 1

(a)

store x 1;
flush x;
store y 1

(b)

store x 1;
flushopt x;
store y 1

(c)

store x 1;
flushopt x;
sfence;
store y 1

(d)

store x 1;
flush x;
store y 1

a := load y;
if (a=1)
store z 1

(e)
 :x, y∈{0, 1}  :y=1 ⇒ x=1  :x, y∈{0, 1}  :y=1 ⇒ x=1  : z=1 ⇒ x=1

Figure 2.7: Example Px86 programs and possible values after recovery from a crash ( ).
In all examples x, y, z are distinct locations in persistent memory such that x=y=z=0
initially, and a is a (thread-local) register.

Instructions such as flush x and flushopt x can be used for controlling when pending
writes are persisted.2 This is illustrated in Fig. 2.7b: executing flush x persists the
earlier write on x (i.e. store x 1) to memory. As such, if the execution of Fig. 2.7b crashes
and upon recovery y=1, then x=1. That is, if store y 1 has executed and persisted
before the crash, then so must the earlier store x 1;flush x. Note that y=1 ⇒ x=1
describes a crash invariant, in that it holds upon crash recovery regardless of when (i.e.
at which program point) the crash may have occurred. Observe that this crash invariant
is guaranteed thanks to the ordering constraints on flush instructions. Specifically, flush
instructions are ordered with respect to all writes; as such, flush x in Fig. 2.7b cannot
be reordered with respect to either write, and thus upon recovery y=1 ⇒ x=1.

However, instruction reordering means that persist instructions may not execute at the
intended program point and thus not guarantee the intended persist ordering. Specif-
ically, flushopt x is only ordered with respect to earlier writes on x, and may be re-
ordered with respect to later writes, as well as earlier writes on different locations. Ex-
ample Fig. 2.7c presents the same pattern as the example Fig. 2.5c and highlights the
ordering constraints of the flushopt instruction. Specifically, flushopt x is not ordered
with respect to store y 1 and may be reordered after it. Therefore, if a crash occurs
after store y , 1 has executed and persisted, but before flushopt x has executed, then it
is possible to observe y=1, x=0 on recovery. That is, there is no guarantee that store x 1
persists before store y 1, despite the intervening flushopt x.

In order to prevent such reorderings and to strengthen the ordering constraints between
flushopt and later instructions, one can use either fence instructions, namely sfence
(store fence) and mfence (memory fence), or atomic read-modify-write (RMW) instruc-
tions such as compare-and-swap (CAS) and fetch-and-add (FAA). More concretely,
sfence, mfence and RMW instructions are ordered with respect to all (both earlier and
later) flushopt, flush and write instructions, and can be used to prevent reorderings such
as that in Fig. 2.7c. This is illustrated in Fig. 2.7d. Unlike in Fig. 2.7c, the intervening
sfence ensures that flushopt in Fig. 2.7d is ordered with respect to store y 1 and cannot
be reordered after it, ensuring that store x 1 persists before store y 1 (i.e. y=1 ⇒ x=1
upon recovery), as in Fig. 2.7b. Note that replacing sfence in Fig. 2.7d with mfence
or an RMW yields the same result. However, upon executing a barrier instruction (i.e.
mfence, sfence or an RMW), execution is blocked until the effect of earlier flushopt
instructions take place; that is, executing such barrier instructions ensures that earlier
flushopt behave synchronously (like flush). Alternatively, one can think of flushopt x
executing asynchronously, in that its effect (persisting x) does not take place immediately

to lift this assumption.
2Executing flush x or flushopt x persists the pending writes on all locations in the cache line of x.

However, as discussed, we assume cache lines contain single locations.
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Figure 2.8: This diagram illustrates the ordering constraints of a selection of Px86 in-
structions as demonstrated in [122]. Each rectangle depicts how the instruction placed
on the right side of the rectangle is ordered with respect to the instructions placed on
the left side of the rectangle. The ordering here does not refer to the order in which the
instructions appear to the program but the order in which the effect of their execution
takes place. We assume that each instruction on the left side precedes in program order
the instruction on the right side. The green-colored instructions cannot be reordered
after the execution of the right instruction, while the red-colored instructions can be re-
ordered. For example, consider the program store x 1; loady. Address x might obtain
the value 1 after address y is read. The orange-colored instructions are only ordered
with respect to addresses of the same cache line. For example, consider the program
flushopt x; flush y. If x and y belong to the same cache line, the address x will always
be persisted before the address y.

upon execution, but rather at a later time.

The example in Fig. 2.7e illustrates how message passing can impose persist orderings
on the writes of different threads. (Note that the program in the left thread of Fig. 2.7e
is that of Fig. 2.7b.) As in mp, if a = 1, then store x 1;flush x is executed before
a := load y (thanks to message passing). Consequently, since store z 1 is executed af-
ter a := load y when a = 1, we know store x 1;flush x is executed before store z 1.
Therefore, if upon recovery z=1 (i.e. store z 1 has persisted before the crash), then
x=1 (store x 1;flush x must have also persisted before the crash). As before, replacing
flush x in Fig. 2.7e with flushopt x;C yields the same result upon recovery when C is
an sfence/mfence or an RMW.

Fig. 2.8 summarize the ordering constraints of the subset of the Px86 instructions, that
Pierogisimp supports.
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2.2.2.1 A summary of existing formalizations of Px86

Persistent Buffer

store b
u
ffer

Core 0

store b
u
ffer

Core N

Persistent Memory

Figure 2.9: The PTSO memory model, as featured in [121]. The volatile components are
illustrated in red color (store buffers, persistent buffer), and the non-volatile components
are illustrated in green color (persistent memory).

In [121], Raad et al. provide operational and declarative semantics for the x86 and
SPARC architectures that integrate persistent memory. The formalization (PTSO) in-
corporates a variation of buffered epoch persistency §2.2.1 as an extension of the Total
Store Order consistency model proposed by Sewell et al. [131]. PTSO obtains an ad-
ditional buffer compared to the standard TSO model, called persistent buffer, which is
located between the store buffers and the persistent memory. Specifically, the PTSO
model consists of (volatile) local per thread store buffers, a global volatile persistent
buffer, and a module of (nonvolatile) persistent memory (Fig. 2.9). In the event of a
crash, the only surviving writes are those in the persistent memory module.

When a thread executes a write, it is recorded to its store buffer. Writes are evicted
from the store buffer and reach the persistent buffer in FIFO order, either when the
store buffer is full or when the thread issues an mfence/CAS instruction, which causes
the store buffer to drain. The persistent buffer is modeled as a FIFO queue of sub-buffers.
Each sub-buffer represents a distinct epoch. Writes are propagating from the persistent
buffer to the persistent memory in a non-deterministic way that reflects the order in
which they persist. Nevertheless, the write propagation to persistent memory respects
persist atomicity. A persist barrier (pfence) enforces epoch ordering by introducing a new
empty epoch sub-buffer in the persistent buffer and requiring the corresponding thread
buffer to drain. Explicit persists are accomplished with the psync instruction, which in
this model stalls the program execution until the pending writes in the persistent buffer
have been propagated to the persistent memory and the persistent buffer is drained.

Subsequent work by Raad et al. [122] refines the previously mentioned model (Fig.2.9)
to more accurately reflect the persistency characteristics of Intel-x86, as detailed in the
Intel manual [1]. This adaptation encompasses various persistence primitives such as
clflush, clflushopt and sfence (see §2.1.3). The persistent buffer is used again to
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model the ordering constraints of persists. This paper presents two versions of Px86
operational semantics, one faithful to the Intel manual and one "corrected" version that
aims to reflect the intended behavior of Intel’s persistence primitives. As before, the time
in which an instruction is exiting the store buffer corresponds to the point at which its
effects become visible to the other threads, thus impacting VMO. Analogously, the time in
which an instruction is exiting the persistent buffer reflects the point at which its effects
become persistent, thus impacting PMO. More recent work [120], extends this model to
include non-temporal writes and reads/writes to a richer set of Intel-x86 memory types.

2.3 Background work on Software Transactional Memory

This section begins by presenting a set of definitions for formalizing the concepts of Soft-
ware Transactional Memory which will be utilized throughout this thesis (§2.3.1). Later
on, we provide an overview of the background work concerning correctness conditions
for (volatile) Software Transactional Memory (§2.3.2). Even though we present here
numerous correctness conditions, in this thesis, we adapt only opacity (Def. 2.3.10) to
the persistency setting. The purpose of presenting multiple correctness conditions is to
compare their respective strengths and weaknesses as well as motivate the selection of
opacity as the most suitable descriptor of correctness for Software Transactional Memory
algorithms (STMs).

2.3.1 Definitions for Formalizing Software Transactional Memory

Correctness conditions for STM have predominantly been defined on histories over
an implementation. A history (Def. 2.3.1) is a sequence of events (invocations and
responses) that records all the interactions between the implementation (STM) and its
clients (programs that are executed by concurrent threads and use STM operations to
achieve synchronization).

Definition 2.3.1 (History). A history is a sequence of events. An event is either (1)
an invocation (inv) or (2) a response (resp) of an operation π out of a set of operations
Op.

A client is interacting with an STM implementation by invoking an STM operation (π)
(i.e. invt(π) event) and an STM implementation is interacting with a client by providing
a response for the invoked operation ( i.e. respt(π) event). Invocation and response
events of the same operation are said to match . Events are further parameterized by
thread or transaction identifiers from a set Tid (t ∈ Tid). In a broader context, a thread
is capable of executing multiple transactions as long as each transaction is linked to a
single thread. Nevertheless, for simplicity in the current model, we assume that each
thread executes no more than one transaction, thus transaction identifiers coincide with
thread identifiers.

STMs usually provide a number of operations to programmers on shared objects. In
this work, we are interested only in read/write objects, and thus, all the following defi-
nitions of validity and legality of transactional histories are specific to such objects. To
elaborate, we are only interested in histories that support operations to start (TMBegin)
and commit (TMCommit) a transaction and operations to read and write shared objects
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invocations possible matching responses
invt(TMBegin) respt(TMBegin(ok), respt(TMBegin(abort))
invt(TMCommit) respt(TMCommit(commit)), respt(TMCommit(abort))
invt(TMRead(x)) respt(TMRead(v)), respt(TMRead(abort))
invt(TMWrite(x, v)) respt(TMWrite(ok)), respt(TMWrite(abort))

Table 2.1: TML history events where t ∈ Tid, x ∈ Loc where x is a read/write object,
and v ∈ Val.

(TMRead, TMWrite). We denote the set of allowed-to-be-accessed by an STM implemen-
tation locations (shared objects) as Loc and the set of values that can be assigned or
be read as Val. Table 2.1 synopsizes the events that may appear in a history of read-
/write objects. As shown, all operations might potentially respond with abort, thereby
aborting the whole transaction.

We use the following notation on histories: for a history h, h|t is the projection onto the
events of transaction t only, and h[i..j] the subsequence of h from h(i) to h(j) inclusive.
For a response event e, we let rval(e) denote the value returned by e; for instance,
rval(TMBegin(ok)) = ok. If e is not a response event, then we let rval(e) = ⊥. We say
that two histories h1, h2 are equivalent, writing h1 ≡ h2, if they consist of exactly the
same events.

A history h is alternating if h = ϵ or is an alternating sequence of invocation and matching
response events starting with an invocation. In other words, h is alternating if it does
not contain concurrent operations. For the rest of this thesis, we assume each process
invokes at most one operation at a time, and hence, we assume that h|t is alternating for
any history h and transaction t. Note that this does not necessarily mean h is alternating
itself.

Correctness conditions of transactional memory are usually defined over well-formed
histories. Well-formedness formalizes the allowable interaction between an STM imple-
mentation and its clients. Here, we consider the following definition of well-formedness.

Definition 2.3.2 (Transactional Well-Formedness). A history is transaction-
ally well-formed if for every t ∈ Tid, h|t =< s0, . . . , sm > is an alternating his-
tory such that s0 = invt(TMBegin), for all 0 < i < m, event si ̸= invt(TMBegin) and
rval(si) /∈ {commit, abort}.

It is important to note that the definition of well-formedness does not allow the reuse of
transaction identifiers. A transaction t is considered committed if rval(sm) = commit and
aborted if rval(sm) = abort. In either case, the transaction t is completed ; otherwise, t
is live.

Given a well-formed transactional history h, we define a real-time order on its transactions
denoted as ≺h. We say that t1 ≺h t2 if transaction t1 completes its commit operation
before transaction t2 starts, indicating the real-time ordering of transactions. If neither
t1 ≺h t2 nor t2 ≺h t1 holds, we consider transactions t1 and t2 to be concurrent. A
history h is non-interleaved if it does not contain concurrent transactions. The relation
≺h constitutes a partial order for h.

Furthermore, given a well-formed transactional history h, we define an operation real-
time order on its transactions, denoted as ≺op

h . Specifically, op1 ≺op
h op2 if operation

41



op1 completes before operation op2. In other words, op1 ≺op
h op2 holds if the response

event of op1 precedes the invocation event of op2 in h. Similarly, operations op1 and op2
are concurrent in h when neither op1 ≺op

h op2 nor op2 ≺op
h op1 holds. The relation ≺op

h

constitutes a partial order for h.

Let’s consider an alternating history hl, which is equivalent to a history h. We can say
that hl respects ≺ if for every pair (t1, t2) of transactions in h for which t1 ≺h t2 holds
then t1 ≺hl

t2 also holds. Moreover, hl respects ≺op on the set of operations in h, if for
every pair (op1, op2) of operations in h for which op1 ≺op

h op2 holds, op1 ≺op
hl

op2 also
holds.

To ensure the correctness of an STM history, a minimum two-step procedure is typically
followed. The first step involves reordering the transactions of the concurrent STM his-
tory to form an equivalent (consisting of the same events) history that has no interleaving
of transactions (sequential history). Secondly, it should be shown that this reordering is
permissible based on the given correctness criterion.

A sequential history has to ensure that the behavior is meaningful with respect to the
reads and writes of the transactions. Below, we first formalize the sequential history
semantics.

Definition 2.3.3 (Valid history). We say an alternating history h is valid iff there
exists a sequence of stores σ0, . . . , σn ∈ (Loc → Val)∗ such that σ0(x) = 0 for all
x ∈ Loc, and for all i such that 0 ≤ i < n and t ∈ Tid:

1) if ev2i = invt(TMWrite(x, v)) and ev2i+1 = respt(TMWrite(ok)) then σi+1 = σi[x :=
v],

2) if ev2i = invt(TMRead(x)) and ev2i+1 = respt(TMRead(v)) then σi(x) = v and
σi+1 = σi,

3) for all other pairs of events (reads and writes with an abort response, as well as
begin and commit events), we require σi+1 = σi.

We write JhK(σ) if σ is a sequence of states that makes h valid (since the sequence is
unique, if it exists, it can be viewed as the semantics of h).

The point of TM is that the effect of the writes only takes place if the transaction
commits. Writes in a transaction that aborts do not affect the memory. However,
all reads, including those executed by aborted transactions, must be consistent with
previously committed writes. Therefore, only some histories of an object reflect ones
that could be produced by a TM. We call these the legal histories, and they are defined
as follows:

Definition 2.3.4 (Legal histories). Let hs be a non-interleaved history and i an index
of hs. Let hs′ be the projection of hs[0..(i−1)] onto all events of committed transactions
plus the events of the transaction to which hs(i) belongs. Then we say hs is legal at
i whenever hs′ is valid. We say hs is legal iff it is legal at each index i. Also, a legal
transaction is defined as a transaction that belongs to a legal history.

Notice here that the definition of legality (Def. 2.3.4) matches the definition given by
Dziuma et al. [54], according to which a well-formed, non-interleaved history h is legal if
for each transaction t ∈ Tid the following points holds for h|t:
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For every read invocation event by t (e = invt(TMRead(x)) whose response value is not
equal to abort (rval(e) ̸= abort):

• If an invt(TMWrite(x, v)) precedes e in h, then there exists a subsequent event e′

in h|t such that e′ = respt(TMRead(v)),

• otherwise, if there is no committed transaction t′ preceding t in h that performed
a successful TMWrite operation on x, then there exists a subsequent event e′ in h|t
such that e′ = respt(TMRead(v)) , where v is the initial value of address x.

• Finally, if t′ is the last transaction that precedes t and performed a successful
TMWrite operation on x and e′′ = invt′(TMWrite(x, v)) is the invocation event of
the last successful TMWrite operation on x by t′, then there exists a subsequent
event e′ in h|t such that e′ = respt(TMRead(v)).

In all the following definitions we denote by S the set of all possible well-formed legal
histories. We also call any history h that belongs to S (h ∈ S) sequential history.

A given concrete history h may be incomplete, i.e., it may contain pending operations,
represented by invocations that do not have matching responses, or it may obtain trans-
actions that are live and have not yet invoked a commit operation. The corresponding
sequential history h′ must decide for each pending commit invocation: either by adding a
responding event e for which rval(e) ̸= abort (the effect has taken place), or by adding a
responding event e for which rval(e) = abort (the effect has not taken place). The trans-
actions that obtain a pending operation that is not TMCommit, are semantically equiv-
alent to aborted transactions, thus in h′ each pending operation that is not TMCommit
is completed with a responding event e for which rval(e) = abort . Live transactions
in h that have not yet invoked a commit operation are also semantically equivalent to
aborted transactions, and thus, in h′ they are completed with an invocation event e and
responding TMCommit event e′ for which rval(e′) = abort .

We denote by complete(h) the set of all possible completions of h that can be formed
according to the above description. In other words, its history in complete(h) is an
extension of h for which all commit pending transactions appear as aborted or committed,
and all the other live transactions appear as aborted.

2.3.2 Correctness Conditions for Software Transactional Memory

This section describes a collection of well-known correctness conditions for volatile Soft-
ware Transactional Memory. To formalize these correctness conditions, we closely adhere
to the formalization proposed by Dziuma et al. [54]. For the following definitions, we
will use the notation comm(h) to define the subhistory that is formed by all events of h
that belong to committed transactions. Below, transactional histories are depicted as di-
agrams. The following conventions have been made. We denote TMBegin as B, TMRead as
R, TMWrite as W, and TMCommit as C. Time is increasing from the left to the right. Its hor-
izontal dotted line depicts a thread/transaction execution line. For brevity, transactional
operations are represented with a line that indicates their duration. The left (resp. right)
vertical line to a transactional operation line represents its invocation (resp. response)
event. For example, instead of writing invt(TMBegin), respt(TMBegin(ok)) to indicate the
successful initialization of the transaction t we attach to the execution line of transaction
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t a tangent line with a subscript: B(ok).The operations of aborted and live transactions
are depicted in red. The events or response values added to the corresponding sequential
history by the function complete are depicted in blue.

Strict Serializability: Strict serializability was first introduced in [116] as a consistency
condition of database systems transactions. In the context of transactional memory,
a concurrent history h satisfies strict serializability if it can be mapped to sequential
history in which (1) the order of events inside each transaction is preserved, (2) the
real-time ordering of the transactions is preserved (only transactions that overlap can
be reordered). The transactions that haven’t been committed at the concurrent history
might be included in the mapped sequential history as committed (along with a commit
event) or they can be omitted. Strict serializability does not impose any restriction
on the values that non-committed (live or aborted) transactions can read. However,
committed transactions can not read values that have been written from non-committed
transactions. Strict serializability is a non-prefix-closed property.

Definition 2.3.5 (Strict Serializability). A concurrent history h satisfies strict
serializability if there exists a history h′ ∈ complete(h) and a history s equivalent to
comm(h′) (s ≡ comm(h′)) such that

1) s ∈ S, and

2) t1 ≺comm(h′) t2 implies t1 ≺s t2.

B(ok) R(x,0) C(commit)R(y,1)

<B(ok) R(x,0) R(y,1) C(commit)>

B(ok) W(x,1,ok) C(abort)

B(ok) W(y,1,ok) C(commit)

t1

t2

t3

<B(ok) W(y,1,ok) C(commit)>
s

h

Figure 2.10: A strictly serializable history h.

Fig. 2.10 depicts a strictly serializable history h. In this example, complete(h) returns
a set with only history h itself, as h does not contain incomplete transactions. On
the other hand, comm(h′) contains all the events of h′ ∈ complete(h) except from the
events of transaction t1, which is aborted. The sequential history s which corresponds
to the transaction ordering t1 ≺ t2, belongs to S and respects the real-time ordering of
comm(h′). Therefore, h is strictly serializable.

Serializability: Serializability is a weaker condition than strict serializability which was
also introduced in [116]. Serializability and strict serializability differ in the fact that
the former does not require the sequential history, which is equivalent to the concurrent
one, to respect the real-time order of the transactions. Serializability is also a non-prefix-
closed property.
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Definition 2.3.6 (Serializability). A concurrent history h satisfies serializability if
there exists a history h′ ∈ complete(h) and a history s equivalent to h′ (s ≡ comm(h′))
such that s ∈ S.

B(ok) R(x,0) C(commit)R(y,1)

B(ok) W(x,1,ok)

B(ok) W(y,1,ok)

t1

t2

t3

s

h

C(commit)

<B(ok) W(y,1,ok) C(commit)> <B(ok) R(x,0) R(y,1) C(commit)> <B(ok) W(x,1,ok) C(commit)>

C(_)

Figure 2.11: A serializable history h.

Fig. 2.11 depicts a serializable history h. In this example, complete(h) returns a set with
two histories that complete h in two possible ways. One element of complete(h) aborts
the transaction t2, while the other, h′, commits t2 successfully. comm(h′) contains all
the events of h′. The equivalent to comm(h′) sequential history s that is depicted in
Fig. 2.11 corresponds to the transaction ordering t2 ≺ t3 ≺ t1, and belongs to S. Thus,
h is serializable.

Causal Related conditions: For the next two correctness criteria, following the rep-
resentation of [54], we introduce the following definitions:

Definition 2.3.7 (read-from binary relation). Given an alternating history l,
which is equivalent to a concurrent history h (h ≡ l), we say that transaction t1 reads
from transaction t2 (t2 ≺r

l t1 ) in h if:

1) Transaction t2 executes a successful TMRead operation π, on address x and returns
a value v.

2) Transaction t1 is the transaction in l that executes the most recent successful
TMWrite operation, which stores the value v to address x and precedes π.

We denote as Rh the set of all read-from relations that can be derived from h. Let
≺r∈ Rh. The causal relation corresponding to ≺r is defined as the transitive closure of
(
⋃

i ≺h|ti
) ∪ ≺r. We assume that Ch represents the set of all causal relations which are

present in h.

Causal consistency: Causal consistency [5, 75] allows each thread/transaction to ob-
serve a different view of the transactional history order, with the condition that each
view respects the same causal relation. Causal consistency is a weaker form of consis-
tency than serializability, which requires that all transactions appear to execute in the
same order. However, it is still a useful property for ensuring correctness in concurrent
systems, particularly in cases where the order of transactions doesn’t matter as long as
their effects are correctly propagated. In the case that each transaction’s view is the
same, causal consistency reduces to serializability.
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Definition 2.3.8 (Causal consistency). Formally, a concurrent history h is causally
consistent if there exists a history h′ ∈ complete(h) and a causal relation ≺c∈ Ccomm(h′)

such that for every transaction ti in h there exists a non-interleaved history li that
satisfies the following conditions:

1) li is equivalent to comm(h′)(l ≡ h′),

2) li satisfies ≺c and

3) ti is legal

History h, as depicted in Fig. 2.12 is causal consistent but not serializable. Causal
consistency allows its transaction to view a different sequential execution of h. For
example, in this case, transaction t3 observes a sequential execution in which t2 precedes
t1, while transaction t4 observes a sequential execution in which t1 precedes t2.

B(ok) R(x,1) C(commit)

B(ok) R(x,2) C(commit)

B(ok) W(x,1,ok) C(commit)

B(ok) W(x,2,ok) C(commit)

t1

t2

t3

h

t4

Figure 2.12: A causal consistent history h, that is not serializable.

Causal Serializability: Causal serializability [126] is a stronger condition than causal
consistency but weaker than serializability. Essentially, a concurrent history h is causally
serializable if it meets the constraints imposed by causal consistency and also if all
transactions in h perceive the same order for transactions that update the same location
(∈ Loc).

Definition 2.3.9 (Causal serializability). A concurrent history h that consists of
n transactions is causally serializable if there exists a history h′ ∈ complete(h) and a
causal relation ≺c∈ Ccomm(h′) such that for every transaction ti (i ∈ [0, n]), there exists
a non-interleaved history li that satisfies the following conditions:

1) li is equivalent to comm(h′),

2) li satisfies ≺c,

3) ti is legal and

4) For each pair of transactions (t1, t2) in comm(h′) that write on the same address,
if t1 ≺li t2 then for all other transactions in h (i ∈ [0, n]), t1 ≺li t2.
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The history of Fig. 2.12 is not causally serializable. This is because causal serializability
imposes that transactions t1 and t2 are ordered in the same way, in all the views of
the transactions that constitute h. If the ordering of the transactions in lt3 (as defined
in 2.3.9) places transaction t2 before t1 then lt4 should also maintain the same order for
t1 and t2 leading to an invalid history.

Opacity: We now introduce opacity, the correctness condition upon which we base our
proposed criterion (Chapter 3) for persistent transactional memory algorithms.

Opacity [67] is a prefix-closed condition which is stronger than strict serializability. In
order for a concurrent history h to be opaque, it should be mapped to a sequential history
that preserves the order of the events inside each transaction and the real-time order of
the transactions, as with strict serializability. However, non-committed transactions (i.e.,
aborted, or live transactions) can only read values written by themselves or previously
committed transactions.

Above, we summarize the main characteristics of opacity. From now on, we will use
the term internal read for a read that a transaction performs to locations that it has
previously written by itself, and external read for a read that a transaction performs to
a location that has been written by another transaction.

• Even though the transactions of the concurrent history h can be reordered in
the matching sequential history s, the operations within a transaction cannot be
reordered.

• Transactions within s should respect the real-time ordering constraint. To elab-
orate, only overlapping transactions in h can be reordered in s. Not overlapping
transactions should maintain their order.

• All transactions, including live and aborted transactions, should appear to perform
internal reads that are consistent with their previous writes. This means that any
internal read of h by a transaction t to a location x should return the last written
value by t to x.

• All committed transactions in h must be ordered in s such that the previous con-
straints are satisfied and consistency is ensured with all previously committed
transactions. This means that any external read of a committed transaction to
a location x in s should return the value of the immediately preceding in s write
performed by a committed transaction at x. In addition, each write of a commit-
ted transaction in s must modify memory in an appropriate manner, and become
visible to the proceeding transactions.

• The main difference between opacity and other STM correctness conditions is mo-
tivated by the potential problems a memory transaction’s (unlike a database trans-
action’s) access to an inconsistent state can cause, even if it is later aborted. To
prevent any potential problems, opacity requires the external reads of aborted or
live transactions in s to also be consistent with all the previously committed trans-
actions. However, writes of live or aborted transactions must not modify memory.
Subsequently, no committed transaction should appear to read a value written by
live or aborted transactions in s.
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Definition 2.3.10 (Opacity). Formally, a well-formed concurrent history h is end-to-
end opaque if there exists a history h′ ∈ complete(h) such that there exists a history s
equivalent to h′ (s ≡ h′) that satisfies the following conditions:

1) s ∈ S, and

2) t1 ≺h′ t2 implies t1 ≺s t2.

A history h is opaque iff its prefix of h is end-to-end opaque.

Fig. 2.13 depicts a non-opaque history. In h1 transaction t1 reads 0 to x for the initial
memory. Then transaction t2 stores 1 at x and y and commits. Finally, transaction t1
reads 1 at y. In this example, it is impossible to order the transactions sequentially such
that Def. 2.3.10 is satisfied. Either t1 must be ordered first, in which case it should have
read the values 0 for both variables x and y, or t2 must be ordered first, in which case
t1 must have read the newly written value (1) for x and y.

History h2 as illustrated in Fig. 2.14 is opaque. The transaction order in the correspond-
ing sequential history s is t1 ≺ t2 ≺ t3. Notice that transaction t2 reads 0 to y despite the
fact that transaction t3 had previously written 1 to y. This is desirable as transaction
t3 eventually aborts, and thus any writes performed by t3 should not be visible to other
transactions. Even though transaction t2 is live in h, it is consistent with the previously
committed transactions in h. Specifically, t2 firstly reads 1 to x, which is the last writ-
ten value on x by a committed transaction (t1), and then reads 0 to y. Address y has
not yet been updated by any committed transaction; thus, the value read is its initial
value. In this example, h′ completes history h by adding an aborted commit operation
to transaction t2.

B(ok) C(commit)W(y,1,ok)W(x,1,ok)

B(ok) R(x,0) R(y,1)
t1

t2

h1

Figure 2.13: A non-opaque history (h1) .

B(ok) W(y,1,ok)

B(ok) W(x,1,ok)

B(ok) R(x,1) R(y,0)

t1

t2

t3

s

h2

C(commit)

<B(ok) R(x,1) R(y,0) C(abort)><B(ok) W(x,1,ok) C(commit)> <B(ok) W(y,1,ok) C(abort)>

C(abort)

Figure 2.14: An opaque history (h2) .

Weaker variations of opacity: Although opacity can offer robust safety guarantees
that render it suitable for transactional memory, some may view it as overly restrictive
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and needlessly complex to implement in TM systems. This is primarily due to its require-
ment that every live and abort transaction must be consistent with all prior committed
transactions. Below is a brief overview of some less strict correctness conditions that aim
to modify various aspects of opacity while preserving its essential safety guarantees.

Virtual world consistency [76] combines opacity with causal consistency. Like opacity,
it applies to all transactions (both committed and aborted/live ones). Informally, it
guarantees that (1) all committed transactions are serializable, and (2) each (reduced)
aborted/live transaction only reads values that are mutually consistent when considering
its causal past. While all committed transactions share the same witness sequential
execution, each aborted /live transaction has its own unique witness sequential execution
that pertains only to its past. Thus, two aborted transactions can possess different
witnesses that offer them consistent values but might not be compatible with each other.

Elastic opacity [57] is a safety property that allows the relaxation of the atomicity require-
ment of transactions. Specifically, elastic opacity allows a transaction to be split into a
series of smaller subtransactions, which are referred to as a cut. These subtransactions
can be executed independently and in parallel without compromising the consistency
and correctness of the overall transaction. The size of these subtransactions can be
dynamically adjusted based on conflict detection, allowing for increased concurrency.

In contrast to opacity, last use opacity [134] permits a transaction to read from a live
transaction if it is commit-pending or if it is still live and has already executed its closing
write on the variable being read. The term closing write refers to the last TMWrite oper-
ation performed by a transaction on a particular address before committing or aborting.
This approach enables early release, which is a technique that allows a transaction to
explicitly remove an address from its read set when it no longer relies on its correspond-
ing value. The benefit of early release is especially notable (though not exclusively) in
systems that use pessimistic concurrency control [133].

2.4 Background work on correctness conditions for concur-
rent objects

This section starts with providing some definitions for formalizing the correctness of
concurrent objects (§2.4.1). We then describe linearizability [73] (Def. 2.4.1), the pre-
dominant correctness condition for volatile concurrent objects, along with various adap-
tations of linearizability for durable concurrent objects (§2.4.2). Although we discuss
various correctness conditions, we only use durable linearizability (Def. 2.4.5) to adapt
opacity to the persistency setting, which is our focus in later chapters. Finally, we pro-
vide a short description of mechanisms for detecting linearized operations after a system
crash ( §2.4.3).

2.4.1 Definitions for Formalizing Correctness of Concurrent Objects

The advent of persistent memory has spurred research interest in defining notions of
correctness that are able to specify the allowable states of a system after a crash. In this
section, we review a subset of durable concurrent correctness conditions, which have led to
the design of a number of persistent concurrent data structures. In Chapter 3 we transfer
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invocations possible matching responses
invt(R(x)) respt(R(v))
invt(W(x, v)) respt(W(ok))

Table 2.2: History events where t ∈ Tid, x is a read/write object and x ∈ Loc, andv ∈
Val.

the principle of durable concurrent correctness to the area of software transactional
memory.

As before, correctness conditions for data structures are defined over histories of im-
plementations. Histories are sequences of events, but now events are not confined to
transactions. In the persistency setting, an event can be an invocation, a response, or a
crash. We are as before interested in sequential read/write objects, thus we consider his-
tories with only read and write operations (π ∈ {R(x), W(x, v)} where x ∈ Loc, v ∈ Val).
Table 2.2 summarizes the invocation events along with the possible responses that occur
in a history h. An operation is completed in h if both its invocation and response event
are appearing in h. Otherwise, it is pending. We introduce the function completeo(h),
which generates all feasible completions of h by removing a subset of pending operation
events from h and adding a response event to its remaining pending operations at the
end of history h.

Invocation and response events are parametrized by a thread id (t ∈ Tid) that indicates
the thread that issues the corresponding operation. Given a history h we define a real-
time order (partial order) on its operations denoted as ≺h. Specifically, π1 ≺h π2 if the
response event of operation π1 precedes the invocation event of π2. If neither π1 ≺h π2
nor π2 ≺h π1 holds, then π1 and π2 are considered to be concurrent. The subsequence h|t
is the projection onto the events of h over transaction t, while the subsequence h|x is the
projection onto the events of h over object x. A history h is sequential if h = ϵ or is an
alternating sequence of invocation and matching response events, except possibly the last
event, starting with an invocation. As before, histories h and h′ are equivalent, denoted
by h ≡ h′, if h|t = h′|t for all t ∈ Tid. A history h is well-formed if h|t is sequential
for every t ∈ Tid. A sequential history h is legal if every subsequence of h for object
x, h|x, adheres to the sequential specification of x. In our case, that x is a read/write
object legality implies that every successful R(x) where x ∈ Loc must return the last
successfully written value on x. We denote the set of the legal sequential histories as
generated by a sequential read/write object as So. Finally, a property P is said to be
local for a history h if for every object x, if h|x satisfies P, then h also satisfies P.

2.4.2 Linearizability and Adaptations of Linearizability to the Persis-
tency Setting.

In this section, we begin by providing a definition of linearizability, which is the most
commonly used correctness criterion for concurrent objects. Afterward, we provide a
number of correctness conditions that can be seen as extensions of linearizability for the
persistency setting.

Linearizability: Linearizability, first introduced in [73], is the standard correctness
condition for concurrent objects. In order for a concurrent history h to be linearizable, it
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should be mapped to a semantically valid, sequential history that includes the operations
of all the different threads that are part of the h, combined. Two conditions should be
met. Firstly, the history of execution of the operations of each thread (h|t) should be
sequential, and each operation of h|t should appear to take effect atomically - at some
point between its invocation and response, at the combined sequential history. The point
of execution of an operation is known as the linearization point. Secondly, the real-time
order of the non-concurrent operations of the concurrent history should be preserved
in the combined sequential history. It should be mentioned that operations that were
invoked but didn’t respond at h can be excluded from the sequential history or can be
included along with added responses.

Definition 2.4.1 (Linearizability). A concurrent history h is linearizable if there
exists a history h′ ∈ completeo(h) such that there exist a history s equivalent to h′

(s ≡ h′) that satisfies the following conditions:

1) s ∈ So, and

2) t1 ≺h′ t2 implies t1 ≺s t2.

Linearizability can be considered a special case of strict serializability where transactions
consist of a single operation. Fig. 2.15 depicts a history that is not linearizable (ha)
and a linearizable history (hb). History ha ≜ ⟨ invt1(W(x, 8)), invt2(R(x)), respt2(R(8)),
invt2(R(x)), respt2(R(0))⟩ can be completed in two ways.

The first way involves completing the pending write operation on x by thread t1 (h′ ≜ ⟨
invt1(W(x, 8)), invt2(R(x)), respt2(R(8)), invt2(R(x)), respt2(R(0)), respt1(W(ok)) ⟩). In
this case, there is no legal sequential history equivalent to h′. If the write of value 8 at
x by t1 is placed before the first read of x by t2, then the second read of x by t2 become
invalid. If the pending write is placed in the middle of the two reads of x by t2 then
both become invalid as the value 8 at x cannot be read before the write of 8 at x takes
place, and t2 cannot read the initial value of x if previously t1 has written the value 8 at
x. Finally, if the pending write is placed after the second read of t2 the first read of t2
becomes invalid.

The second way involves omitting the pending write operation on x by thread t1 (h′ ≜ ⟨
invt2(R(x)), respt2(R(8)), invt2(R(x)), respt2(R(0))⟩) In this case, again there is no legal
sequential history equivalent to h′, as the t2 is obliged to read only the initial value of x.

History hb ≜ ⟨ invt1(W(x, 1)), invt2(W(x, 3)), respt1(W(ok)), invt1(W(x, 2)), respt2(W(ok)),
respt1(W(ok)), invt2(R(x)), respt2(R(3))⟩ is linearizable. Placing the write of value 1 at
x by t1 before the write of value 2 at x by t1 and the write of value 2 at x by t1 before
the write of value 3 at x by t2 leads to a legal, sequential history that is equivalent to h
and respects the real-time order of operations.

2.4.2.1 Persistent Memory Consistency conditions

Linearizability does not take into account any potential crash events. Since persistent
memory enables the continuation of execution after a system crash, linearizablity has
been extended to cover system crashes in several ways.
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R(x,3)

W(x,3,ok) R(x,3)W(x,2,ok)W(x,1,ok)
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W(x,1,ok)
t1

t2

hb
W(x,2,ok)

W(x,3,ok)

t1

t2

ha

W(x,8,_)

R(x,8) R(x,0)

Figure 2.15: A not linearizable history ha amd a linearizable history hb.

Strict Linearizability: Aguilera et al. [4], defined strict linearizability. Strict lineariz-
ability ensures the limited effect of operations. Specifically, in the case that a thread
crashes while executing an operation, it requires this operation to take effect between its
invocation and the crash, but not after the crash. Following the formalization proposed
in [21], we introduce a scompleteo(h), which generates all the possible strict completions
of a concurrent history h by 1) adding a matching response for a subset of pending op-
erations in h after the operation’s invocation event and before the thread’s crash event
(if any), 2) removing from h crash events, the remaining pending operations and any
subsequent invocation/response event issued by a crashed thread (if any) after the crash
event.

Strict linearizability assumes that crashed threads do not continue their execution after
the crash. A disadvantage of this model is that it has been proven to exclude some
wait-free implementations.

Definition 2.4.2 (Strict Linearizability). Formally, a concurrent history h is strictly
linearizable if there exists a history h′ ∈ scompleteo(h), and a history s equivalent to h′

(s ≡ h′) such that that satisfies the following conditions:

1) s ∈ So, and

2) t1 ≺h′ t2 implies t1 ≺s t2.

History h ≜ ⟨ invt2(W(x, 1)), invt1(R(x)), respt2(W(ok)), invt2(W(x, 3)), respt1(R(1)),
Crash, invt2(W(y, 1)), respt2(W(ok)), invt1(R(x)), invt2(R(x)), respt1(R(1)), respt2(R(3))
⟩ as depicted in Fig. 2.16, has a strict completion that can be mapped to a legal sequen-
tial history (s) which respects the real-time order of h′ ≜ ⟨ invt2(W(x, 1)), invt1(R(x)),
respt2(W(ok)), respt1(R(1)), invt1(R(x)), respt1(R(1)) ⟩. History h′ does not contain the
write of 3 at x from thread t2, as well as the crash event and all the operations of t2 after
the crash event.

Persistent Atomicity: Guerraoui and Levy [69], have defined persistent atomicity. In
their model, threads are crashing individually, and due to a recovery procedure that takes
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R(x,1)

Crash

W(x,1,ok) R(x,1) R(x,1)

Figure 2.16: A strict linearizable history h.

place after a crash, their execution can resume after the crash. Informally, persistent
atomicity ensures that a pending operation of a thread t, t ∈ Tid, that was interrupted
by a crash event can take place between its invocation and the invocation of the first
operation that thread t issues after the crash. This differs from strict linearizability,
which requires any pending operation to take necessarily effect before a crash occurs.
One of the limitations that this condition introduces is that it doesn’t provide locality:
the merge of correct object histories, is not necessarily correct. As before, to formalize
persistent atomicity, we define a pcompleteo(h) function, which constructs all the possible
atomically persistent completions of a concurrent history h by 1) adding a matching
response for a subset of pending operations in h, after the operation’s invocation event
and before the thread’s first invocation event after the first subsequent crash (if any), 2)
removing all the crash events and the remaining pending operations from h.

Definition 2.4.3 (Persistent atomicity). Formally, a concurrent history h adheres
to persistent atomicity if there exists a history h′ ∈ pcompleteo(h) and a history s equiv-
alent to h′ (s ≡ h′) that satisfies the following conditions:

1) s ∈ So, and

2) t1 ≺h′ t2 implies t1 ≺s t2.

The history of Fig 2.17 has at least two persistent atomic completions. The first one,
which leads to the legal sequential history sa, includes the pending write of 3 at address x.
As seen, this operation is completed after the crash event of t2 but before the invocation of
the next operation of t2 that follows the crash. In this example, completing this operation
earlier would not affect the legality of the sa. Unlike strictly linearizable completions,
sa does not omit the operations (at least the committed ones) of the crashed thread t2
after the crash event. Since x at sa obtains the value 3 after the crash, the subsequent
pending read of x by t2 is completed to return the value 3.

The second one, which leads to the legal sequential history sb, omits the pending write
of 3 at address x. Since in this x at sb obtains the value 1 after the crash, the subsequent
pending read of x by t2 is completed to return 1.

Recoverable Linearizability: Berryhill et al. [21] have proposed recoverable lineariz-
ability. This condition strengthens persistent atomicity by allowing every pending oper-
ation to happen before its thread invokes anything on the same object post-crash. Al-
though it provides locality, this condition doesn’t provide consistency around the crash
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Figure 2.17: A persistent atomic history h.

-a thread can perform an operation on some other object before coming back to the
pending operation, breaking well-formedness.

To formally define recoverable linearizability, we introduce a recoverable completion
function (rcompleteo(h)). This function presents exactly the same functionality as
scompleteo(h) with the only exception that it does not remove subsequent to the crash
event invocation/response events issued/received by a crashed thread. This is because
the current model, as with persistent atomicity, assumes that immediately after a crash,
a recovery process is taking place, allowing the crashed thread to resume execution. Op-
posite to the so far presented correctness conditions recoverable linearizability imposes
ordering constraints based on the order of events of the original history h rather than
the completed history h′.

To avoid the inversion of program order, a second partial order is defined on pairs of
operations in h (≪h), according to which, π1 ≪h π2 if both operations are issued by
the same thread, access the same object, and the invocation event of π1 precedes the
invocation event of π2 in history h.

Definition 2.4.4 (Recoverable Linearizability). Formally, a concurrent history
h adheres to recoverable linearizablity if there exists a history h′ ∈ rcompleteo(h) and a
history s equivalent to h′ (s ≡ h′) such that:

1) s ∈ So,

2) t1 ≺h t2 implies t1 ≺s t2, and

3) t1 ≪h t2 implies t1 ≪s t2.

Fig. 2.18 illustrates the same history h as Fig. 2.16. Let’s consider a completed history
h′ (h′ ∈ rcompleteo(h)) which adds a response event at the pending write operation at
x before the crash event. Specifically h′ ≜ ⟨ invt2(W(x, 1)), invt1(R(x)), respt2(W(ok)),
invt2(W(x, 3)), respt1(R(1)), respt2(W(ok)), Crash, invt2(W(y, 1)), respt2(W(ok)), invt1(R(x)),
invt2(R(x)), respt1(R(1)), respt2(R(3)) ⟩

According to the second clause of the Def. 2.4.4 the write operation by t2 on x (W (x, 3, ok))
can be placed in the equivalent legal sequential history, no later than the invocation of
an operation of the same thread to the same object (R(x, 3)). This permits the forming
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of s(∈ So), in which after the crash thread t2 first reads the value written on x before
the crash (1), then writes 3 on x, and finally reads the newly written value.

R(x,3)

R(x,1)

W(x,3,_)

t1

t2

s

h

W(x,1,ok) W(y,1,ok)

R(x,1)

Crash

W(x,1,ok) R(x,1) R(x,1)W(x,3,ok)W(y,1,ok) R(x,3)

Figure 2.18: A recoverable linearizable history h.

Durable Linearizability: Interestingly, Izraelevitz et al. noticed that both the lack of
consistency after a crash in recoverable linearizability, as well as the lack of locality in
persistent atomicity, derive from the fact that the crash-recovery model that they are
based on allows a thread to crash on its own, recover and continue its execution as before.
Furthermore, other threads are not affected by the crash. This model doesn’t correspond
to reality as usually the threads that are executing before a crash do not survive after it.
This behavior is captured in the crash-recovery model proposed in [81], where crashes are
universal, and threads can operate only in one crash-free region. Informally, a concurrent
history h is durably linearizable if the history h′, which results from removing the crash
events of h, is linearizable.

Given a history h, we let ops(h) denote h restricted to non-crash events. The crash
events partition a history into h = ϵ0Crash1ϵ1Crash2...ϵn−1Crashnϵn, such that n is
the number of crash events in h, Crashi is the ith crash event and ops(h) = ϵ0ϵ1...ϵn−1ϵn,
(i.e., h contains no crash events). We call the subhistory ϵi the i-th era of h. As sequential
histories do not include crash events, the well-formedness condition suggests that every
thread identifier appears in at most one era, meaning that thread identifiers cannot be
reused after a crash.

Definition 2.4.5 (Durable Linearizability). A well formed history h is durably
linearizable if ops(h) is linearizable.

Assuming a universal crash, recoverable linearizability and persistent atomicity are indis-
tinguishable. This is because both conditions allow the pending operations of a thread
t to be completed before thread t executes a subsequent to the crash operation. If there
is no other operation executed after the crash by the same thread, both conditions allow
the matching response to be appended in the end of the history, becoming equivalent to
durable linearizability.

Fig. 2.19 illustrates a durable linearizable history h. Specifically h ≜ ⟨ invt2(W(x, 4)),
invt1(R(x)), respt1(R(4)), invt1(W(x, 5)), respt1(W(ok)), Crash invt3(R(x)), invt3(R(5)) ⟩

As seen, no invocation/response event in h has the same thread identifier before and after
the system crash. Having h, we can obtain ops(h) by removing from h the crash event.
History h′ ≜ ⟨ invt2(W(x, 4)), invt1(R(x)), respt1(R(4)), invt1(W(x, 5)), respt1(W(ok)),
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Figure 2.19: A durable linearizable history h.
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Figure 2.20: A buffered durable linearizable history h.

invt3(R(x)), invt3(R(5)), respt2(W(ok)) ⟩ belongs to completeo(ops(h)) and has an equiv-
alent legal sequential history (s) which respect the real-time order of the events of h′.

Buffered Durable Linearizability: Buffered durable linearizability is a variation of
durable linearizability also proposed in [81]. This condition is more relaxed than durable
linearizability in the sense that it allows the removal of committed operations before
a crash, as long as the resulting history is legal. The formalization of durable opacity
necessitates the definition of a ≺h consistent cut as follows: A ≺h consistent cut is a
subhistory p of h for which it holds that if op1 ≺h op2 and op2 ∈ p then op1 ∈ p.

Definition 2.4.6 (Buffered Durable Linearizability). A well-formed history h
is buffered durably linearizable if there exist subhistories p0, p1...pc−1 such that for all
0 ≤ i ≤ c, pi is a ≺h consistent cut of ϵi and p = p0, p1...pc−1ϵc is linearizable.

The history depicted in Fig. 2.20 is buffered durable linearizable, as there exists p0 ≜ ⟨
invt1(W(x, 5)), respt1(W(ok)) ⟩ and p1 ≜ ⟨invt3(R(x)), respt3(R(5)) ⟩ that form a lineariz-
able history p ≜ ⟨ invt1(W(x, 5)), respt1(W(ok))invt3(R(x)), respt3(R(5)) ⟩. Unlike durable
linearizability, buffered durable linearizability is not a local property. However, buffered
durable linearizability is potentially more efficient than durable linearizability, as it re-
quires less flushes.
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2.4.3 Recovery and Continuation of Execution

In addition to ensuring memory consistency, persistency algorithms also need to incorpo-
rate recovery mechanisms that can identify linearized operations and resume execution
securely without compromising memory consistency or performance. The following def-
initions address how and where a thread should recover in a program.

Detectable execution [60] refers to the program’s ability to determine whether a failed
operation was linearized before a crash and retrieve its response if it was. Friedman
et al. [60] present three implementations of the Michael and Scott queue [107], one of
which guarantees durable linearizability and detectable execution. This implementation
relies on an announcement array [72], which adds an entry for each prospective operation
execution. Each entry includes a thread identifier, an operation identifier, a completion
flag, and the operation’s result. The thread identifier and operation identifier uniquely
identify each operation. When a crash occurs, the recovery mechanism inspects the an-
nouncement array to determine if an operation was completed before the crash or needs
to be re-executed. Ben-Baruh et al. [18] demonstrate that a wide range of objects, such as
read/write, CAS, and FIFO queue objects, require auxiliary state (e.g., unique identifiers
passed as arguments to recoverable operations) for any obstruction-free detectable im-
plementation. Moreover, they investigate the lower bound on space complexity, showing
that non-blocking detectable implementations of these objects do not necessarily have
unbounded space complexity.

Several detectable algorithms have been proposed in the literature, including those by
Ben-Baruh et al. [18, 19] and Attiya et al. [13]. Ben-David et al. [19] demonstrate that
for any code consisting only of read, write, and CAS primitives, detectability can be
achieved by partitioning the code into capsules. Their model assumes individual thread
crashes, and each capsule consists of a recoverable CAS operation followed by multiple
reads. Essentially, a capsule constitutes a part of the code that guarantees that at the
end of it, all the variables are persisted. A capsule can be safely repeated from the
beginning any number of times. After a crash, a thread resumes execution from the last
executed capsule before the crash.

Attiya et al. [13] suggested nesting-safe recoverable linearizability (NRL) which deals with
the continuation of execution of a client program after a crash takes place. Specifically,
it requires the most nested operation to be completed via a recovery mechanism after a
crash. The proposed model assumes that threads are crashed individually and that the
state of the program, including the stack frame that contains the response value of an
operation and the program counter is persistent, thus it is not lost after a crash.

Li et al. [100] introduce an alternative approach called detectable sequential specifica-
tion (DSS), which is largely model-agnostic. DSS incorporates detectability within the
sequential specification, allowing applications to request detectability on demand while
leaving the correct nesting of objects to the application code. To enable detectability,
the sequential specification of an object is enhanced with three additional operations
per operation π. First, a pre − π operation declares that the subsequent operation π
is detectable and its outcome should be saved. Then, an ex− π operation executes the
operation π. Finally, a resolve operation is called after a crash to retrieve the result of
the most recent operation π for which pre− π was invoked before the crash.
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Chapter 3

dTMLSC under Strict Persistency

In this chapter, we transfer the principle of durable concurrent correctness to the area of
software transactional memory (STM). First, we introduce a novel definition of durable
opacity extending opacity to handle crashes and recovery in the context of persistent
memory (§3.1). Second, we develop operational semantics for persistent sequential con-
sistency (§3.2). Third, we use the aforementioned semantics to develop dTMLSC, a
durably opaque version of an existing STM algorithm, namely the Transactional Mutex
Lock (TML) (§3.3). Then, we develop a specification (dTMS2) which is the result of
adapting the TMS2 specification, an operational characterization of opacity, to our per-
sistency model (§3.4). We later show that dTMS2 implies durable opacity. We design
a proof technique for durable opacity based on refinement. Finally, we apply this proof
technique to show that the durable version of TML, dTMLSC, is indeed durably opaque
(§3.5). The correctness proof is mechanized within Isabelle/HOL.

3.1 Persistency for Transactional Memory

Although numerous correctness conditions for concurrent objects have been established
in the context of persistent memory, little emphasis has been placed on developing cor-
rectness conditions for software transactional memory in the same context. This section
presents durable opacity which is a modification of opacity tailored to suit persistent
memory. Durable opacity can be thought of as a combination of opacity (as defined
in 2.3.10) with durable linearizability (as defined in 2.4.5).

Durable opacity is a correctness condition that is defined over histories that record the
invocation and response events of operations executed on the transactional memory like
opacity. Unlike opacity, durably opaque histories record system crash events, thus may
take the form: H = ϵ0Crash1ϵ1Crash2...ϵn−1Crashnϵn, where each ϵi is a history
(containing no crash events) and Crashi is the ith crash event. We call the subhistory
ϵi the i-th era of h.

As with durable linearizability, we assume that crash events are universal, meaning that
threads that have started their execution before a crash event, are aborted and thus
not reused after the crash event. Following Izraelevitz et al. [81], for a history h, we
let ops(h) denote h restricted to non-crash events, thus for h, ops(h) = ϵ0ϵ1 . . . ϵn−1ϵn,
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Figure 3.1: A durable opaque history h.

which contains no crash events. We consider here the Def. 2.3.2 of transactional well-
formendness. Considering that alternating histories, as defined in section §2.3.1, do not
include crash events, similar to durable linearizability, durable well-formedness ensures
that transaction/thread identifiers do not appear in more than one era.

Definition 3.1.1 (Durable Opacity). Formally, a history h is durably opaque iff it is
durably well-formed and ops(h) is opaque. A TM implementation is opaque iff each of
its histories is opaque.

Figure 3.1 depicts an example of a durably opaque history (h). In order to show that
h is durably opaque it is sufficient to show that it is durably well-formed and ops(h) is
opaque. This holds as there exists at least one valid sequential history that corresponds
to h. For example, the sequential history that matches the ordering: t1 ≺ t3 ≺ t2 ≺ t4
belongs to S and respects the real-time order of transactions. Notice that t1, t2 and t3
are overlapping so they can be reordered. However since both t2 and t3 read the value
1 at address z, t1 should precede them. Transaction t2 aborts thus its write at x is
not visible to the subsequent transactions. However, the returned value (1) of its read
at address z is consistent with the previous writes at z. Transaction t3 has not been
committed before the crash event. Since it is a live transaction, its write is not visible to
subsequent transactions. Transaction t4 reads the initial value (0) at x, as neither t2 nor
t3 modified it successfully. It also reads the value 1 at z which is successfully written by
the preceding transaction t1. Another legal reordering is : t1 ≺ t2 ≺ t3 ≺ t4.

3.2 Persistent SC Syntax and Semantics

In this section we present a persistent sequential memory model. This is a relatively
simple model that closely aligns with a developer’s intuitive comprehension of non volatile
memory.
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3.2.1 Persistent SC Language

The syntax of sequential programs is given by the following grammar:

v, u∈Val ≜ N x, y, . . .∈Loc o∈Dobj f ∈F a, b, . . .∈Reg t∈Tid ≜ N
i, j, k, . . .∈Lab â, b̂, . . . ∈ AuxVar ê ∈ AuxExp ::= v | â | ê+ê | · · ·

e ∈ Exp ::= v | a | e+e | · · · B ∈ BExp ::= true | B ∧B | · · ·
α ∈ ASt ::= skip | a := e | a := loadx | store x e

| r :=CAS x e e | flush x | o.f
ls ∈ LSt ::=α goto j | if B goto j else to k | ⟨α goto j, â := ê⟩
Π ∈ Prog ≜Tid × Lab → LSt pc ∈ PC ≜ Tid → Lab

Atomic statements (in ASt) comprise skip, assignment, memory reads and writes, and
explicit persist instruction. Specifically, a := e evaluates expression e and returns it in
register a; a := loadx reads from memory location x and returns it in register a; and
store x e writes the contents of register a to location x. The r :=CAS x e1 e2 denotes
‘compare-and-swap’ on location x, from the evaluated value of e1 to the evaluated value
of e2, and sets r to true if the CAS succeeds and to false, otherwise. The o.f denotes
a call to an atomic method f of object o. Finally, flush x denotes an explicit persist
instruction. Even though this model is a simplified description of persistency and is
not supported directly by any hardware platform, the flush x instruction resembles in
strength and functionality Intel’s clflush x instruction (see §2.1.3).

Formally, we model a program Π as a function mapping each pair (t, i) of thread identifier
and label to the labeled statement (in LSt) to be executed. A labeled statement may
be 1) a plain statement of the form α goto j, comprising an atomic statement α to be
executed and the label j of the next statement; 2) a conditional statement of the form
if B goto j else to k to accommodate branching, which proceeds to label j if B holds
and to k, otherwise; or 3) a statement with an auxiliary update ⟨α goto j, â := ê⟩, which
behaves as α goto j, but in addition (in the same atomic step) updates the value of the
auxiliary variable â with the auxiliary expression ê.

We track the control flow within each thread via the program counter function, pc, which
records the program counter of each thread. We assume a designated label, ι ∈ Lab,
representing the initial label ; i.e. each thread begins execution with pc(t) = ι. Similarly,
ζ ∈ Lab represents the final label. Moreover, if pc(t) = i at the current execution step,
then: 1) when Π(t, i)=α goto j or Π(t, i)=⟨α goto j, a := ê⟩, then pc(t)=j at the next
step; 2) when Π(t, i)= if B goto j else to k at the current step, then if B holds in the
current state, then pc(t)=j at the next step; otherwise pc(t)=k at the next step.

3.2.2 Persistent SC Semantics

3.2.2.1 The Persistent SC Machine State

The persistent SC state is modelled by a tuple σ = ⟨pc, rec, regs, vm, pm, G⟩. pc : Tid →
Lab maps each thread to the next program counter to be executed. The rec : bool
component is a flag that indicates when a recovery process is in progress. In the event
of a crash, rec is set to true to indicate that an implementation-specific recovery process
is about to start its execution. Once the recovery process completes, rec is reset to
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false (see below). T : Tid → regs maps each thread to a record of its registers (regs :
Reg → Val). The volatile memory is represented as a mapping from locations to values
(vm : Loc → Val). The persistent memory also constitutes a mapping from locations to
values (pm : Loc → Val). G : AuxVar → Val records the current values of auxiliary
variables. We denote the state’s σ components as σ.T, σ.vm, etc. In addition, we use
standard function/record update notation (e.g. vm′ = vm[x 7→ v] denotes the volatile
memory state obtained from vm by mapping the x address to the new value v.) In the
initial state (σinit), pc(t) = ι for all t ∈ Tid, rec = false, regs(t) r = 0 for all t ∈ Tid and
r ∈ regs, vm(x) = 0, pm(x) = 0 for all x ∈ Loc and G(a) = 0 for all a ∈ AuxVar.

3.2.2.2 Modelling Crashes and Recovery

In this model, the crash transition simply sets the value of each location (in Loc)
in the volatile memory (vm) to its corresponding value in the persistent memory (pm).
Furthermore, it resets the registers of each thread. The persistent memory as well as the
values of the auxiliary variables recorded in G remain intact after a system crash takes
place.

We assume that recovery is executed by a unique system thread syst that is different
from any program thread. Recovery is only enabled in state σ if σ.rec holds. Moreover,
we assume a special label Recpending , which corresponds to the label of the first recovery
instruction. Upon completion of the recovery procedure, we assume that pcsyst is set to
Reccomplete , and that there is a transition from this state to a state in which rec is set to
false.

3.2.2.3 Persistent SC Transitions

The transitions of persistent SC are presented in Fig. 3.2 and Fig. 3.3. Note, that, for
simplicity and following [80,90], we conservatively assume that writes persist atomically
at the location granularity (representing, e.g. machine words) rather than at the gran-
ularity of the width of a cache line. The assign transition a := e, assigns the value of
register e to register a. The store transition store x e, maps the given location x to
the value of the given register e in vm. The persistent memory pm remains the same in
the pre and post-state. The flush transition maps x in persistent memory to its cor-
responding value in volatile memory. The CAS instruction has two distinct transitions:
one represents a CAS success and the other represents a CAS failure. The CAS-success
transition requires the value of register e1 to be equal to the value of address x in the
volatile memory. In the post state the value of x in the volatile memory is updated to the
value of register e2 and the register a is assigned true. The CAS-fail transition occurs
only if the value of x is not equal to the value of register e1. In such a case, the register
α is assigned false while all the other elements of the state remain unchanged. Fig. 3.3
depicts the control flow transitions for a program Π under Persistent SC.

The above operational definitions naturally induce a notion of a execution (or a “run”)
of persistent SC a certain program Π starting from the initial state σinit as described in
section §3.2.2.1. A program-crash might occur at any point during the execution. A
system-flush transition corresponds to a write becoming persistent, not because of the
execution of a flush instruction, but because its cache line has been evicted to persistent
memory, due to the cache replacement mechanism.
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(assign)
α = a := e
v = regs(e)

regs′ = regs[a 7→ v]

⟨regs, vm, pm⟩ α−→ ⟨regs′, vm, pm⟩

(store)
α = store x e
v = regs(e)

vm′ = vm[x 7→ v]

⟨regs, vm, pm⟩ α−→ ⟨regs, vm′, pm⟩

(load)
α = a := loadx

regs′ = regs[a 7→ vm(x)]

⟨regs, vm, pm⟩ α−→ ⟨regs′, vm, pm⟩

(flush)
α = flush x

pm′ = pm[x → vm(x)]

⟨regs, vm, pm⟩ α−→ ⟨regs′, vm, pm′⟩

(CAS-success)
α = a :=CAS x e1 e2

v1 = regs(e1)
v2 = regs(e2)
vm(x) = v1

vm′ = vm[x 7→ v2]
regs′ = regs[a 7→ true]

⟨regs, vm, pm⟩ α−→ ⟨regs′, vm′, pm⟩

(CAS-fail)
α = a :=CAS x e1 e2

v1 = regs(e1)
vm(x) ̸= v1

regs′ = regs[a 7→ false]

⟨regs, vm, pm⟩ α−→ ⟨regs′, vm, pm⟩

Figure 3.2: Instruction transitions of Persistent SC for a program Π.

(program-normal)
pc(t) = i Π(t, i) = α goto j

⟨T(t), vm, pm⟩ α−→ ⟨regs′, vm′, pm′⟩ pc′ = pc[t 7→ j] T′ = T[t 7→ regs′]

⟨pc,T, false, vm, pm, G⟩ ⇒Π ⟨pc′,T′, false, vm′, pm′, G⟩

(program-if)

pc(t) = i Π(t, i) = if B goto j else to k pc′ = pc

[
t 7→

{
j T(t)(B) = true

k T(t)(B) = false

]
⟨pc, false,T, vm, pm, G⟩ ⇒Π ⟨pc′, false,T, vm, pm, G⟩

(program-ghost)

pc(t) = i Π(t, i) = ⟨α goto j, â := ê⟩ ⟨T(t), vm, pm⟩ α−→ ⟨regs′, vm′, pm′⟩
pc′ = pc[t 7→ j] T′ = T[t 7→ regs′] G′ = G[â 7→ G(ê)]

⟨pc, false,T, vm, pm, G⟩ ⇒Π ⟨pc′, false,T′, vm′, pm′, G′⟩

(program-crash)
regs′ = (λa.0) T′ = (λt.regs′) pc′ = pc[syst 7→ Recpending ]

⟨pc, false,T, vm, pm, G⟩ ⇒Π ⟨pc′, true,T′, pm, pm, G⟩

(system-flush)
pm′ = pm[x → vm(x)]

⟨pc, b,T, vm, pm, G⟩ ⇒Π ⟨pc′, b,T, vm, pm′, G⟩

Figure 3.3: Control flow transitions of Persistent SC for a program Π.
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TMBegin
Bp : do loct := load glb;
B1 : until even(loct);
Br : return ok

TMRead(x)
Rp : rt := loadx;
R1 : ct := load glb;
R2 : if ct = loct then
Rr : return rt
Ab : else return abort

TMCommit
Cp : if odd(loct) then
C1 : log .empty();
C2 : ⟨store glb (loct + 1),

writer := None⟩
Cr : return commit ;

TMWrite(x, v)
Wp : if even(loct) then
W1 : hasWrittent := CAS glb loct (loct + 1);
W2 : if hasWrittent then
W3 : ⟨xt := loct + 1, writer := t⟩
Ab : else return aborted

W4 : if ¬log .contains(x) then
W5 : ct := loadx;

W6 : log .update(x, ct);
W7 : store x v;

W8 : flush x;
Wr : return ok

TMRecover
Rec1 : while ¬log .isEmpty()
Rec2 : csyst := log .getKey();
Rec3 : store csyst log .getVal(csyst);
Rec4 : flush csyst ;

Rec5 : log .update(csyst ,⊥);

Rec6 : store glb 0;

Figure 3.4: Durable Transactional Mutex Lock

3.3 Example: Durable Transactional Mutex Lock

We now develop a durably opaque STM: a persistent memory version of the Transactional
Mutex Lock (TML) [38].

3.3.1 The dTMLSC Algorithm

In this section, we describe TML and the extensions required for guaranteeing durable
opacity under persistent SC. Pseudocode for dTMLSC is given in Fig. 3.4. The lines that
constitute our extensions to the original algorithm are highlighted in green colour. All
the local variables, apart from the auxiliary ones, are modeled as registers. To distinguish
them from global variables, we index the registers with the id of the transaction that
they belong to. As before, we assume that thread identifiers coincide with the transaction
identifiers.

Line numbers are corresponding to label values (in Lab). For the sake of readability, we
may use the term program counter (pct, t ∈ Tid) to refer to labels. Transactions that
are starting (resp. returning successfully from) the execution of a dTMLPx86 operation
are in a pending (resp. responding) state. The corresponding program counter starts
with the starting letter of the pending (resp. responding) operation and ends in p (resp.
r) (i.e. Bp for begin pending, Br for begin responding). In case a dTMLSC operation
fails, it transitions to Ab, which is an abbreviation for Aborted.
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3.3.2 The Basic TML Algorithm

In this section, we ignore the lines in green colour and focus on the original algorithm.
TML performs writes in an eager manner, also known as direct update, i.e., it updates
shared memory within the write operation itself. This is in contrast to lazy algorithms
that store writes locally in a write set, and update shared memory at a later stage,
e.g., in the commit operation. Additionally TML adopts a strict policy for transactional
synchronization: as soon as a transaction attempts to write to a variable, all other
transactions running concurrently will be aborted when they will invoke a read or a write
operation. To enforce this synchronization policy, TML uses a single global versioned
lock, glb, and a local register loct that is used for recording a snapshot of glb at the
beginning of the transaction t. A writing transaction is in progress iff the value of glb is
odd.

A transaction t starts (operation TMBegin) by reading glb and storing the read value in
the register loct (Bp). If the value of glb is odd, another writing transaction is in progress
so t does not start. Instead, it reattempts to start by rereading glb.

Operation TMWrite(x, v) first checks whether loct is even (Wp). If not, t must already
be the writing transaction, and hence, it can proceed immediately towards executing the
new write on the given address (W7). If loct is even, it means that the current transac-
tion is not yet a writing transaction, thus it attempts to become a writing transaction by
performing a compare-and-swap (CAS) operation (W1). If this CAS succeeds TMWrite
becomes the writing transaction and increments loct (W3), making loct odd, then pro-
ceeds to update x to v (W7). In addition, at W3, the auxiliary variable writer is set to
t. If the CAS at W1 fails the transaction t aborts.

Operation TMRead(x) first reads the value at the given location x and stores it in the
register rt (Rp). At line R2, the operation reads the current value of glb. If this value is
the same as loct, then either

• this transaction is the writing transaction, or

• no other writing transaction has performed any writes since this transaction started.

thus it returns the read value. Otherwise, it aborts (Rr).

A transaction t commits by first checking whether loct is odd (Cp). If so, it means that
t is a writing transaction (and hence glb is odd), thus it makes glb even by incrementing
glb by one. Furthermore, it sets the auxiliary variable writer to None (C2). If t is a
read-only transaction (i.e., loct is even), it simply returns commit .

3.3.3 Ensuring Durability

Our implementation uses a durably linearizable persistent undo log log that records the
previous values of locations that have been overwritten by incomplete writing transac-
tions. The log is reset to empty when the writing transaction commits. If a crash occurs
when an incomplete writing transaction t is in flight, the subsequent recovery operation
sets the state to the last consistent state by undoing the writes of t using the undo log. In
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Fig. 3.4, we use operations log .isEmpty(), log .contains(x ), log .getKey(), log .getVal(),
log .update(x , v) to stress that these operations are durably linearizable.

Our durable TML algorithm (dTML) makes the following adaptations to TML. Note
the the operations build on a model of a crash that resets volatile memory to persistent
memory.

1) Within a write operation writing to address x, prior to modifying the value at x,
we record the existing address-value pair in log , provided that x does not already
appear in the undo log (lines W4−W6). After updating the value (which updates
the value of x in the volatile store), the update is flushed to persistent memory
prior to the write operation returning (line W8).

2) We introduce a recovery operation that checks for a non-empty log and transfer the
logged values to persistent memory, undoing any writes that have been completed
(but not committed) before the crash occurred. Since a crash could occur during
recovery, we transfer values from the undo log to persistent memory one at a time.

3) In the commit operation, we note that we distinguish a committing transaction as
one with an odd value for loct. For a writing transaction, the log must be cleared
by setting it to the empty log (line C1). Note that this is the point at which a
writing transaction has definitely been committed since any subsequent crash and
recovery would no longer undo the writes of this transaction.

3.4 Operational Specification for Durable Opacity

In this section, we first model dTMLSC as an Input/Output Automaton. We then develop
an operational specification dTMS2 by adapting TMS2, which we later show that it
implies durable opacity.

3.4.1 Background: Input/Output Automata: IOA

We use Input/Output Automata (IOA) [104] to model both the implementation, dTMLSC,
and the specification, dTMS2.

Definition 3.4.1 (Input/Output Automaton (IOA)). An Input/Output Automaton
(IOA) is a labeled transition system A with a set of states states(A), a set of actions
acts(A), a set of start states start(A) ⊆ states(A), and a transition relation trans(A) ⊆
states(A)× acts(A)× states(A) (so that the actions label the transitions).

The set acts(A) is partitioned into input actions input(A), output actions output(A) and
internal actions internal(A). The internal actions represent events of the system that
are not visible to the external environment. The input and output actions are externally
visible, representing the automaton’s interactions with its environment. Thus, we define
the set of external actions, external(A) = input(A) ∪ output(A). We write s

a−→A s′ iff
(s, a, s′) ∈ trans(A).

An execution of an IOA A is a sequence σ = s0a0s1a1s2 . . . snansn+1 of alternating states
and actions, such that s0 ∈ start(A) and for all states si, si

ai−→A si+1. A reachable state
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of A is a state appearing in an execution of A. An invariant of A is any superset of the
reachable states of A (equivalently, any predicate satisfied by all reachable states of A).
A trace of A is any sequence of (external) actions obtained by projecting the external
actions of any execution of A. The set of traces of A, denoted traces(A), represents A’s
externally visible behavior.

3.4.2 IOA for dTMLSC

We now provide the IOA model of dTMLPx86 (Fig. 3.4) over the persistent SC state.
Specifically, the dTMLSC state comprises global (shared) variables glb ∈ Loc; the volatile
memory store vm ∈ Loc → Val; and the persistent memory store pm ∈ Loc → Val.
We also use the following transaction-local variables: the program counter pct : Tid →
Lab, loct ∈ Reg, the input address xt ∈ Tid → Val and the input value vt ∈ Tid →
Val. We also make use of an auxiliary variable writer the value of which is either the
transaction id of the current writing transaction (if one exists), or None (if no writing
transaction is currently running).

The durably linearizable log, log, is modeled as a partial mapping from location to values
(log ∈ Loc 7→ Val), where 7→ denotes a partial function (modelling log in persistent
memory). We assume the following operations

• log .isEmpty(): that returns true whenever the log is empty (i.e., all elements are
mapped to ⊥)

• log .contains(x): that returns true whenever the log contains x (i.e., x is not
mapped to ⊥)

• log .update(x, v): that updates the logged location x to value v

• log .getKey(): that non-deterministically returns a location whose value is not ⊥,
and

• log .getVal(x): that returns the value of x in log .

The log is stored in the G state component of the state (§3.2.2.1) and updated according
to SC semantics.

Execution of the program is modeled by defining an IOA transition for each atomic step
of Fig. 3.4 using the values of pct (for transaction t) to model control flow. When t is in
flight, but not executing any operation we have pct = Ready . Similarly, pct = Aborted
and pct = Committed iff t has aborted or committed, respectively. Otherwise, pct is a
line number corresponding to the instruction of the operation t is executing. Each action
that starts a new operation or returns from a completed operation is an external action.
The crash action is also external. All other actions (including system flush and recovery)
are internal actions. Notice that all the transitions of Fig. 3.4 apart from the transition
to Aborted correspond to internal actions.

To model system behaviors (crash, system flush, and recovery), we reserve a special
transaction id syst. A crash and system flush is always enabled, and hence can always
be selected for execution. Recovery steps are enabled after a crash has taken place
(rec = true) and are only executed by syst. The effect of a flush is to copy the value
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of the address being flushed from vm to pm. Note that a flush can also be executed at
specific program locations. In Fig. 3.4, a flush of x occurs at lines W8 and Rec4. The
effect of a crash is to perform the following:

• set the volatile store to the persistent store (since the volatile store is lost),

• set the program counters of all in-flight transactions (i.e., transactions that have
started but not yet completed) to Aborted to ensure that these transaction identi-
fiers are not reused after the system is rebooted, and

• set the label of syst to Rec1 to model that a recovery is now in progress.

In our model, it is possible for a system to crash during recovery. However, no new
transaction may start until after the recovery process has been completed.

3.4.2.1 dTMLSC IOA Invariant ( )

In order to prove that the dTMLSC algorithm is durably opaque, we use a certain invariant
of the dTMLSC model. The invariant is given as a selection of preconditions, where each
precondition describes the pre-state of a transition of the dTMLPx86 IOA. This invariant
is similar to the corresponding invariants used in the proof of the original TML algorithm
for the conventional volatile RAM model proposed in [44].

Briefly, our invariant keeps track of the parity of loct and indicates whether loct is equal
to glb or less than glb. Furthermore, it implies that there is at most one writing trans-
action, and there is no such transaction when glb is even. It also constrains the possible
differences between volatile and persistent memory: volatile and persistent memory are
identical except for any location that has been written by a writer or by the recovery
procedure but not yet flushed.

Our invariant has been verified in Isabelle/HOL and it is checked for local correctness
and stability.

3.4.3 IOA for dTMS2

In this section, we describe the dTMS2 specification, an operational model that ensures
durable opacity, which is based on TMS2 [50]. TMS2 itself has been shown to strictly
imply opacity [99], and hence has been widely used as an intermediate specification in
the verification of transactional memory implementations [10,11,46,47].

We let f ⊕ g denote functional override of f by g, e.g., f ⊕{x 7→ u, y 7→ v} = λk. if k =
x then u elseif k = y then v else f(k).

Formally, dTMS2 is specified by the IOA in Fig. 3.5, which describes the required or-
dering constraints, memory semantics, and prefix properties. Memory is modelled by a
function of type Loc → Val. A key feature of dTMS2 (like TMS2) is that it keeps track
of a sequence of memory states, one for each committed writing transaction. This makes
it simpler to determine whether reads are consistent with previously committed write op-
erations. Each committing transaction containing at least one write adds a new memory
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State variables:
L : seq(Loc → Val), initially satisfying dom(L) = {0} and init(L(0))
beginIdxt : IN for each t ∈ Tid, unconstrained initially
rdSett : Loc 7→ Val, initially empty for all t ∈ Tid
wrSett : Loc 7→ Val, initially empty for all t ∈ Tid
pct = PCV al for each t ∈ Tid, initially pct ∈ NotStarted for all t ∈ Tid.

Transition relation:

invt(TMBegin)
pre : pct = NotStarted ∧ t ̸= syst
eff : pct := BeginPending;

invt(TMRead(x))
pre : pct = Ready ∧ t ̸= syst
eff : pct := ReadPending(x);

invt(TMWrite(x)(v))
pre : pct = Ready ∧ t ̸= syst
eff : pct := WritePending(x, v);

invt(TMCommit)
pre : pct = ready ∧ t ̸= syst
eff : pct := CommitPending;

invt(TMCancel)
pre : pct = Ready ∧ t ̸= syst
eff : pct := CancelPending;

doBegint
pre : pct = BeginPending ∧ t ̸= syst
eff : pct = BeginResponding;

beginIdxt = |L| − 1;

doCommitt
pre : pct = CommitPending ∧ t ̸= syst ∧

((wrSett = ∅ ∧ ∃n. validIdx (t, n)) ∨ rdSett ⊆ last(L))
eff : pct = CommitResponding ;

if wrSett ̸= ∅ then
L := L ++ ⟨last(L)⊕ wrSett⟩;

TMCrashRecovery
pre : True
eff : λt ∈ Tid. if pct /∈ {NotStarted,

Aborted, Committed} then pct := Aborted;
L := ⟨last(L)⟩;

respt(TMBegin(ok))
pre : pct = BeginResponding ∧ t ̸= syst
eff : pct := Ready;

respt(TMRead(v))
pre : pct = ReadResponding(v) ∧ t ̸= syst
eff : pct := Ready;

respt(TMWrite(ok))
pre : pct = WriteResponding ∧ t ̸= syst
eff : pct := Ready;

respt(TMCommit(commit))
pre : pct = CommitResponding ∧ t ̸= syst
eff : pct := Committed;

respt(abort)
pre : pct /∈ {NotStarted,Ready, Committed,

CommitResponding,Aborted}
eff : pct := Aborted;

doWritet(x, v)
pre : pct = WritePending(x, v) ∧ t ̸= syst
eff : pct := WriteResponding ;

wrSett := wrSett ⊕ {x → v};

doReadt(x)
pre : pct = ReadPending(x) ∧ t ̸= syst ∧

(x ∈ dom(wrSett) ∨ validIdx (t, n))
eff : if x ∈ dom(wrSett) then

v := wrSett(x);
pct := ReadResponding(v);

else
v := L(n)(x);
rdSett := rdSett ⊕ {x → v};
pct := ReadResponding(v);

where
validIdx(t, n) = beginIdxt ≤ n < |L| ∧ rdSett ⊆ L[n]

Figure 3.5: The state space and transition relation of dTMS2, which extends TMS2 with
a crash event
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version to the end of the memory sequence. However, unlike TMS2, following [45], the
memory state is considered to be the persistent memory state. Interestingly, the volatile
memory state need not be modelled.

The state space of dTMS2 has several components. The first, L, is the sequence of
memory states. For each transaction t there is a program counter variable pct, which
ranges over a set of program counter values, which are used to ensure that each transaction
is well-formed, and to ensure that each transactional operation takes effect between its
invocation and response. There is also a begin index variable beginIdxt, that is set to the
index of the most recent memory version when the transaction begins. This variable is
critical for ensuring the real-time ordering property between transactions. Finally, there
is a read set, rdSett, and a write set, wrSett, which record the values that a transaction
t has read and written during its execution, respectively.

The read set is used to determine whether the values that have been read by the transac-
tion are consistent with the same version of memory (using validIdx). The write set, on
the other hand, is required because writes in dTMS2 are modeled using deferred update
semantics: writes are recorded in the transaction’s write set, but are not published to
any shared state until the transaction is committed.

The crash action models both a crash and a recovery. We require that it is executed
by the system thread syst. It sets the program counter of every in-flight transaction to
aborted, which prevents these transactions from performing any further actions in the
era following the crash (for the generated history). Note that since transaction identifiers
are not reused, the program counters of completed transactions need not be set to any
special value (e.g., crashed) as with durable linearizability. Moreover, after restarting, it
must not be possible for any new transaction to interact with memory states prior to the
crash. We therefore reset the memory sequence to be a singleton sequence containing
the last memory state prior to the crash.

The following theorem ensures that dTMS2 can be used as an intermediate specification
in our proof method.

Theorem 3.4.1 ( ). Each trace of dTMS2 is durably opaque.

3.5 Proving Durable Opacity of dTMLSC ( )

Previous works [10, 11, 47, 51] have considered proofs of opacity using the operational
TMS2 specification [50], which has been shown to guarantee opacity [99]. The proofs
show the refinement of the implementation against the TMS2 specification using either
forward or backward simulation. For durable opacity, we use a similar proof strategy.

In the following sections, we will begin by presenting Theorem 3.4.1, and subsequently,
we will demonstrate a refinement between dTMLSC and dTMS2. Both proofs rely on
the simulation relation technique. Specifically, to prove the soundness of dTMS2, we will
utilize an inductive technique akin to forward simulation, which we will refer to as weak
simulation. After establishing a weak simulation between TMS2 and dTMS2, we will
then construct a trace inclusion proof to show Theorem 3.4.1. To show that dTMLSC

refines dTMS2 and is thus durably opaque, we will illustrate a forward simulation between
dTMLSC and dTMS2.
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To demonstrate that dTMS2 implies durable opacity, we will rely on the result presented
by Lesani et al. [99], which establishes that TMS2 guarantees opacity. Our next proof
regarding dTMLSC refining dTMS2 closely follows the proof technique used by Derick et
al. [44] for showing that TML refines TMS2.

Prior work

Opacity

TMS2

TML

⊑ (forward simulation [99])

⊑ (forward simulation [44])

Our work

Durable opacity

DTMS2

DTML

⊑ (weak simulation+trace inclusion)

⊑ (forward simulation)

3.5.1 Background: Refinement and Simulation

We now present the definitions of forward simulation and weak simulation that are used
in the subsequent proofs.

For automata C and A, we say that C is a refinement of A iff traces(C) ⊆ traces(A). We
can show that C is a refinement of A by proving the existence of a forward simulation,
which enables one to check step correspondence between the transitions of C and those
of A. The definition of forward simulation we use is adapted from that of Lynch and
Vaandrager [103].

Definition 3.5.1 (forward simulation). A forward simulation from a concrete IOA
C to an abstract IOA A is a relation R ⊆ states(C) × states(A) such that each of the
following holds.

Initialisation: For each cs ∈ start(C) there is some as ∈ start(A) such that R(cs, as).

External step correspondence: For each cs ∈ reach(C), as ∈ reach(A), a ∈ external(C),
and cs′ ∈ states(C), if R(cs, as) and cs a−→C cs′ then there is some as′ ∈ states(A) such
that R(cs′, as′) and as a−→A as′.

Internal step correspondence: For each cs ∈ reach(C), as ∈ reach(A), a ∈ internal(C)
and cs′ ∈ states(C), if R(cs, as) and cs

a−→C cs′ then either R(cs′, as) or there is some
as′ ∈ states(A) and a′ ∈ internal(A) such that as

a′−→A as′ and R(cs′, as′).

Initialisation.
as

cs

R(cs, as)

External step correspondence.
as

cs

R(cs, as)

as′

cs′

R(cs′, as′)

a

a
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Internal step correspondence (stuttering).
as

cs

R(cs, as)

cs′

R(cs′, as)

a

Internal step correspondence
(non-stuttering).

as

cs

R(cs, as)

as′

cs′

R(cs′, as′)

a′

a

Forward simulation is sound in the sense that if there is a forward simulation between A
and C, then C refines A [103,109].

Weak simulation allows some external actions of the concrete automaton C to be treated
as internal actions.

Definition 3.5.2 (weak simulation dTMS2-dTMLSC). A weak simulation from a
concrete IOA of dTMS2 (C) to the abstract IOA A of TMS2 (A) is a relation R ⊆
states(C)× states(A) such that each of the following holds.

Initialisation. ∀cs ∈ start(C). ∃as ∈ start(A). R(cs, as)

External step correspondence: For each cs ∈ reach(C), as ∈ reach(A), a ∈ external(C)
\ {TMCrashRecovery}, and cs′ ∈ states(C), if R(cs, as) and cs

a−→C cs′ then there is
some as′ ∈ states(A) such that R(cs′, as′) and as

a−→A as′.

Internal step correspondence: For each cs ∈ reach(C), as ∈ reach(A), a ∈ internal(C) ∪
{TMCrashRecovery} and cs′ ∈ states(C), if R(cs, as) and cs a−→C cs’ then either R(cs′, as)

or there is some as′ ∈ states(A) and a′ ∈ internal(A) such that as a′−→A as’ and
R(cs′, as′).

The only difference between this definition and the standard notion in Definition 3.5.1
is that we treat crash events as internal events.

Both the weak simulation established between dTMS2−TMS2 and the forward simula-
tion established between dTMLSC − TMS2 obtain the following form:

R(cs, as) = globalR(cs, as) ∧ ∀t ∈ Tid. txnR(cs, as, t)

The simulation relation (R) in both cases is split into two relations: a global relation,
globalR, and a transactional relation txnR. The global relation describes how the shared
states of the two automata are related, while the transactional relation specifies the
relation between the state of each transaction in the concrete and abstract transition
system.

3.5.2 Soundness of dTMS2

In Lemma 2, we show that if h ∈ traces(dTMS2) then ops(h) ∈ traces(TMS2). It has
already been shown [99] that every trace of TMS2 is opaque. Putting these two facts
together, we have that for every trace h ∈ traces(dTMS2), ops(h) ∈ traces(TMS2) is
opaque, and so h is durably opaque.
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TMS2 is fully described in [50]. We do not present the automaton explicitly here, but it
is precisely the dTMS2 automaton with the crash action removed.

We prove Lemma 2 by exhibiting a relation R ⊆ states(dTMS2)× states(TMS2), which
satisfy the properties given in Def. 3.5.1 (weak simulation).

Lemma 1. For any relation R ⊆ states(dTMS2)× states(TMS2), if R is a weak simu-
lation from dTMS2 to TMS2 then for every h ∈ traces(dTMS2), ops(h) ∈ TMS2.

Proof. The proof is a simple induction on the length of the executions of dTMS2. More
specifically, for each execution e of dTMS2, we inductively construct an execution e′

of TMS2 such that ops(trace(e)) = trace(e′) which is sufficient. This construction is
entirely standard, and ensures at each step that the final states of each execution are
related by R. This guarantees (given the definition of weak simulation) that we can
always extend e′ appropriately.

We turn now to our main lemma.

Lemma 2. For every trace h ∈ traces(dTMS2), ops(h) ∈ traces(TMS2).

Proof. By Lemma 1, it is enough to exhibit a weak simulation. We define our weak
simulation R ⊆ states(dTMS2) × states(TMS2) as follows (we explain the components
of this relation shortly):

(cs, as) ∈ simR ⇐⇒ ∃i ∈ IN.(cs, as) ∈ globalR(i) ∧ ∀t.(cs, as) ∈ txnR(i, t) (3.1)

Recall that crash events in dTMS2 cause dTMS2’s memory sequence to be shortened
to a length 1 sequence. There is no corresponding event in TMS2. Thus, the primary
difficulty in our proof is relating the sequence of memories in states of dTMS2 with
those of TMS2. The existentially quantified index i in Equation 3.1 allows us to do this.
Informally, if (cs, as) ∈ R then the memory sequence in c is equal to the suffix of the
memory sequence in a beginning at index i.

The global relation globalR, indexed by i, is the conjunction of the following:

|cs.M |+ i = |as.L| (3.2)
∀n < |cs.M |.cs.M [n] = as.L[n+ i] (3.3)

The transactional relation txnR , indexed by i, and transaction index t is the conjunction
of the following:

cs.pct /∈ {NotStarted, Committed,Aborted} =⇒
cs.beginIdxt + i = as.beginIdxt (3.4)

and

cs.pct ̸= Aborted =⇒ cs.pct = as.pct (3.5)
cs.pct ̸= Aborted =⇒ cs.rdSett = as.rdSett (3.6)
cs.pct ̸= Aborted =⇒ cs.wrSett = as.wrSett (3.7)

We now prove that R is a weak simulation.
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3.5.2.1 Initialisation

Initially, we let i = 0. Because initially cs.M = as.L = [m] where m is the initial memory
state, we have

|cs.M |+ i = |cs.M |+ 0

= |as.L|

and

∀n < |cs.M |.cs.M [n] = as.L[n+ 0]

= as.L[n]

and so for initial states cs, as, we have (cs, as) ∈ globalR(0). Also, we have (cs, as) ∈
txnR(t, 0) as required.

3.5.2.2 External Step Correspondence

There are eight cases to consider. We directly address two. The other cases are very
similar. (Note that we do not treat the TMCrashRecovery action as external in this weak
simulation.)

invt(TMBegin) case:

Let a = invt(TMBegin) for some thread t and let cs
a−→C cs′ be a transition of dTMS2.

Let as be an abstract state such that (cs, as) ∈ R, and let i be the index that witnesses
the existential quantification of R. We first show that the precondition of invt(TMBegin)
is satisfied by as. Note that cs.pct = NotStarted, and thus (by Equation 3.5), we have
as.pct = NotStarted, which is sufficient. Because as satisfies a’s precondition, we can
let as′ be the unique state satisfying as

a−→A as′. It remains to show that (cs′, as′) ∈ R.
First observe that (cs′, as′) ∈ globalR(i), because cs′.M = cs.M , as′.L = as.L and
(cs, as) ∈ globalR(i). Furthermore, note that

as′.beginIdxt = |as.L| Transition relation of TMS2
= |cs.M |+ i Equation 3.2
= cs′.beginIdxt + i Transition relation of dTMS2

as required for Equation 3.4. It is easy to check the other conditions that (cs′, as′) ∈
txnR(t, i).

invt(TMCommit) case:

Let a = invt(TMCommit) for some thread t and let cs a−→C cs′ be a transition of dTMS2.
Let as be an abstract state such that (cs, as) ∈ R, and let i be the index that witnesses the
existential quantification of R. We first show that the precondition of invt(TMCommit)
is satisfied by as. Note that cs.pct = Ready, and thus (by Equation 3.5), we have
as.pct = Ready, which is sufficient. Because as satisfies a’s precondition, we can let
as′ be the unique state satisfying as

a−→A as′. It remains to show that (cs′, as′) ∈ R.
First observe that (cs′, as′) ∈ globalR(i), because cs′.M = cs.M , as′.L = as.L and
(cs, as) ∈ globalR(i). Furthermore, the only local variables that change are cs′.pct and
as′.pct so (cs′, as′) ∈ txnR(t, i) is essentially immediate from (cs, as) ∈ txnR(t, i).
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3.5.2.3 Internal Step Correspondence

There are several cases to consider. We directly address two. The other cases are very
similar. We first address the Crash action.

TMCrashRecovery case:

Let a = TMCrashRecovery for some thread t and let cs
a−→C cs′ be a transition of

dTMS2. Let as be an abstract state such that (cs, as) ∈ R, and let i be the index that
witnesses the existential quantification of R. We must show that (cs′, as) ∈ R. It is
sufficient to prove that

(cs′, as) ∈ globalR(|as.L| − 1) ∧ ∀t.(cs′, as) ∈ txnR(t, |as.L| − 1)

So we let i′ = |as.L| − 1. Note that cs′.M = [last(cs.M)]. Thus

|as.L| = 1 + |as.L| − 1

= |cs′.M |+ |as.L| − 1

as required for Equation 3.2. Also, if n < |cs′.M | then n = 0, and

cs′.M [0] = last(cs.M)

= as.M [|cs.M | − 1 + i] Equation 3.3
= as.L[|as.L| − 1] Equation 3.2

as required for Equation 3.3. To prove the transactional relation, note that for all t,
cs′.pct ∈ {NotStarted, Committed,Aborted} so there is nothing to prove for Equation
3.5. Furthermore, if cs′.pct = NotStarted then cs.pct = NotStarted and therefore the
other properties of txnRel(t, |as.L| − 1) are straightforwardly maintained.

doCommitt ∧ dom(wrSett) ̸= ∅ case:

Now, let a = doCommitt, dom(wrSett) ̸= ∅ for some transaction t and let cs
a−→C cs′ be

a transition of dTMS2. Let as be an abstract state such that (cs, as) ∈ R, and let i be
the index that witnesses the existential quantification of R. In this case, we show that
the dTMS2 transition simulates the doCommitt ∧dom(wrSett) ̸= ∅ transition in TMS2.
As usual, we show that the precondition holds in as. Again, Equation 3.5 is enough to
prove that the program counterpart of the precondition holds. We must also show that
if cs.rdSett is consistent with respect to last(cs.M) it is also consistent with respect to
last(as.L). But

last(cs.M) = cs.M [|cs.M | − 1]

= as.L[|cs.M | − 1 + i]

= as.L[|as.M | − 1]

= last(as.L)

which is sufficient. Clearly, because cs.wrSett = as.wrSett, the nonemptiness of cs.wrSett
implies the nonemptiness of as.wrSett. Because, as satisfies the precondition of a, we let
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as′ be the unique state satisfying as
a−→A as′. It remains to show that (cs′, as′) ∈ R.

To do so, we let i be the index witnessing this fact, so that we prove

(cs′, as) ∈ globalR(i) ∧ ∀t.(cs′, as) ∈ txnR(t, i)

First, observe that

|as′.L| = |as.L|+ 1

= |cs.M |+ i+ 1

= |cs′.M |+ i

as required for Equation 3.2. It is straightforward to see that 3.3 is preserved. The only lo-
cal variables that change are cs′.pct and as′.pct, which are both equal to CommitPending,
so (cs′, as′) ∈ txnR(t, i).

Similar arguments prove that the internal step correspondence condition is met for the
other actions.

We now show that dTMS2 is sound (Theorem 3.4.1).

Proof. Let h ∈ traces(dTMS2). By Lemma 2, ops(h) ∈ traces(TMS2) and so ops(h) is
opaque [99]. Now, by Definition. 3.1.1, h is durably opaque.

3.5.3 Durable Opacity of dTMLSC ( )

We now describe the simulation relation used in the Isabelle proof.

3.5.3.1 Global Relation of the dTMLSC-dTMS2 Simulation Relation

We first describe globalR, which assumes the following auxiliary definitions where cs is
the concrete state (of dTMLSC) and as is the abstract state (of dTMS2). Our simulation
relation assumes the following auxiliary definitions, where cs is the concrete state and
as is the abstract state. We define intHalf (n) ≜

⌊
n
2

⌋
, which returns the integer part of

n divided by 2. These definitions are used to compensate for the fact that the commit
of a writing transaction in the dTMLSC algorithm takes effect (i.e., linearizes) at line C1
when the log is set to empty.

writes(cs, as) ≜ if cs.writer = t ∧ pct ̸= C2 then as.wrSett else ∅
logicalGlb(cs) ≜ if cs.writer = t ∧ pct = C2 then cs.glb+ 1 else cs.glb

wrCount(cs) ≜ intHalf (logicalGlb(cs))

Function writes(cs, as) returns the (abstract) write set of the writing transaction. This
is the write set of the writing transaction, t, in the abstract state as provided t hasn’t
already linearized its commit operation, and is the empty set otherwise. Function
logicalGlb(cs) compensates for a lagging value of glb after a writing transaction’s com-
mit operation is linearized. Namely, it returns the glb incremented by 1 if a writer is
already at C2. Finally, wrCount(cs) is used to determine the number of committed
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writing transactions in cs since the most recent crash since cs.glb is initially 0 and reset
to 0 by the recovery operation, and moreover, cs.glb is incremented twice by each writing
transaction: once at line W1 and again at line C2 when the writing transaction commits.

globalR(cs, as) =
(¬Recovering ⇒ cs.vm = last(as.L)⊕ writes(cs, as) ∧ (3.8)

wrCount(cs) + 1 = |as.L|) ∧ (3.9)
(cs.vm⊕ cs.log) = last(as.L) ∧ (3.10)
∀t.t ̸= syst ∧ cs.pct = NotStarted ⇒ as.pct = NotStarted (3.11)

Conditions (3.8) and (3.9) assume that a recovery procedure is not in progress. By (3.8),
the concrete volatile store is the last memory in as.L overwritten with the write set of
an in-flight writing transaction that has not linearized its commit operation. By (3.9),
the number of memories recorded in the abstract state (since the last crash) is equal to
wrCount(cs) + 1. By (3.10), the last abstract (persistent) store can be calculated from
cs.vm by overriding it with the mappings in cs.log. Note that this is equivalent to undoing
all uncommitted transactional writes. Finally, (3.11) ensures that every identifier for a
transaction that has not started at the concrete level also has not started at the abstract
level.

3.5.3.2 Transactional Relation of the dTMLSC-dTMS2 Simulation Relation

We now turn to txnR. Its specification is very similar to the specification of txnR in the
proof of TML [44]. A part of txnR maps concrete program counters to their abstract
counterparts, which enables steps of the concrete program to be matched with abstract
steps. To elaborate, this mapping provides adequate information for identifying the lin-
earization points (the point in which an operation appears to take effect) of dTMLSC.
The linearization points of dTMLSC correspond to the concrete steps of the dTMLSC op-
erations that simulate the execution of the corresponding abstract (dTMS2) operations.
These steps are called non-stuttering steps, while all the other steps are called stuttering
steps.

cs.pc : NotStarted Aborted
as.pc : NotStarted Aborted

cs.pc : Ready Committed
as.pc : Ready Committed

cs.pc : Bp,B1 ∧ odd(cs.loct) B1 ∧ even(cs.loct), Br
as.pc : BeginPending BeginResponding

cs.pc :
Rp,R1 ∧ (cs.loct ̸= cs.glb),

R2 ∧ (cs.loct ̸= cs.glb)
R1 ∧ (cs.loct = cs.glb),

R2 ∧ (cs.loct = cs.glb), Rr
as.pc : ReadPending(cs.xt) ReadResponding(cs.vt)

cs.pc : Wp−W7 W8,Wr
as.pc : WritePending(cs.xt, cs.vt) WriteResponding

cs.pc : Cp,C1 C2, Cr
as.pc : CommitPending CommitResponding

Table 3.1: Mapping of dTMLSC to dTMS2 pc values.

As expected, the dTMLSC pc values are mapped to the same dTMS2 pc value in stuttering
steps and transition to different dTMS2 pc values in non-stuttering steps.
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For example, concrete pc values Wp,W1,W2 . . . , W7 correspond to abstract pc value
WritePending(cs.xt, cs.vt), whereas W7 corresponds to WriteResponding, indicating
that, in our proof, the execution of line W7 corresponds to the execution of an abstract
doWritet(cs.xt, cs.vt) operation.

More precisely the linearization points of dTMLSC are as follows: The dTMLSC automa-
ton transitions of invocation, response, and crash events are considered linearization
points and thus simulate the corresponding invocation, response, and crash events of
dTMS2. Operation TMBegin never aborts, and it linearizes at Bp when the value loaded
in Bp is even. The linearization point of operation TMRead is at R1. Specifically, if no
writing transaction has been performed by the time of R1 execution (cs.loct = cs.glb),
then the TMRead operation linearizes to a successful read operation. Otherwise, it aborts.
Operation TMWrite linearizes when the memory is updated at W7. Finally, operation
TMCommit obtains two linearization points depending on whether the transaction has
successfully executed a TMWrite operation. If so, cs.loct is odd, and TMCommit linearizes
to a successful commit at C1. Otherwise, cs.loct is even, and TMCommit linearizes at Cp.

Moreover, txnR specifies that each in-flight transaction t satisfies properties:

as.beginIdxt ≤ intHalf (cs.loct) (3.12)
as.rdSett ⊆ as.L[intHalf (cs.loct)] (3.13)

Condition (3.12) ensures that a transaction does not introduce a transaction before its
abstract begin index and (3.13) ensures that all reads are consistent with the last write
in the abstract memories. Note that although dTMS2 (like TML2) allows read sets of a
transaction to be validated against any memory in mems after the transaction’s begin
index, dTMLSC (like TML) uses a single global lock for synchronisation, which means
that transactions are forced to validate against the last memory in mems.

Conditions (3.12) and (3.13) helps to establish as.validIdx(t, cs.loct) for in-flight trans-
action t. To see this, first observe that in dTMLSC, every in-flight transaction satisfies
cs.loct ≤ logicalGlb(cs), and by (3.9) above, intHalf (logical_glb(cs)) < |as.L|. There-
fore,

cs.pct /∈ {NotStarted,Bp} ⇒ intHalf (cs.loct) < |as.L| (3.14)

Together, (3.12), (3.13) and (3.14) imply as.validIdx(t, cs.loct) for all in-flight transac-
tions t.

Relation txnR must also provide enough information to enable linearization of a commit
operation against the correct abstract step. txnR requires that for each in-flight the
following equivalence must hold true, except when the TMBegin operation is occurring
and during the interval between a successful compare-and-swap execution at line W1
and the subsequent write at line W7:

even(cs.loct) ⇐⇒ (as.wrSett = ∅) (3.15)

Because dTMLSC uses the parity of loct to determine whether a transaction is read-
only, condition (3.15) enables us to prove the appropriate precondition when dTMLSC

simulates a commit action.

Finally, txnR must ensure that the recovery operation is such that the volatile store
matches the last abstract store in as.L prior to the crash. To achieve this, we require
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that |as.L| = 1 when syst is executing the recovery procedure, and the volatile store
for the address being flushed at Rec4 matches the abstract state before the crash, i.e.,
cs.vm(cs.csyst) = (as.L)[0]csyst. Since the recovery loop only terminates after the log
is emptied, this ensures that the concrete memory state is consistent with the abstract
memory prior to executing any transactions after a crash has occurred.

We now describe precisely the step correspondence between dTMLSC and dTMS2. For
this, we use a step corresponding function sc of the form sc(cs, t, α) = β, where cs is a
concrete state, t is a transaction identifier, α is an internal action of dTMLSC, and β is
the internal action of dTMS2 that corresponds to α in case α indicates a non-stuttering
step. In case that α indicates a stuttering step sc returns ⊥.

• A begin operation takes effect when a transaction t reads an even value for glb at
Bp. The pc mapping provided by txnR (Fig. 3.1) guarantees that the corresponding
abstract action is doBegint. Thus, if α = Bp and even(cs.glb) then sc(cs, t, α) =
doBegint.

• A read operation takes effect when a transaction executes Rp and cs.glb at
this point obtains the same value with cs.loct. This indicates that there is no
writing transaction in progress, or that has been committed since transaction t
began its execution. Having this, it is guaranteed that the value read in Rp is
either the last written value by transaction t or, if such write has not occurred,
the last write on x by a committed transaction. This value corresponds to the
value of x at the as.L[intHalf (cs.loct)] element of the abstract memory. As t is
in-flight while executing a read operation by Equations 3.12, 3.13 and 3.14 it
can be inferred that intHalf (cs.loct) meets the ordering constrains imposed by
the dTMS2, i.e. validIdx(t, intHalf (cs.loct)). The concrete to abstract mapping of
program counter values (Fig. 3.1) guarantees that the value that has been provided
as address and the value that has been returned coincide for both TMS2 and
dTMLSC. Therefore, if α = Rp and loct = glb then sc(cs, t, α) = doReadt(cs.xt) ∧
∃n.n = intHalf (cs.loct) ∧ validIdx(t, n).

• A write operation takes effect when a transaction t executes W6. The pc mapping
provided by txnR (Fig. 3.1) guarantees that the corresponding abstract action is
doWritet(,t). Thus if α = W7 a then sc(cs, t, α) = doWritet(cs.xt, cs.vt). As before
the pc mapping provided by txnR ensures that as.pct obtains the correct value.

• A commit operation takes effect at Cp for a read-only transaction and at C1 for
a writing transaction. In both cases (α = Cp or α = C1) its holds that sc(cs, t, α)
= doCommitt. Equation (3.15) is used for determining if t is a read-only transaction
(as.wrSett = ∅). If so, the precondition of dTMS2 requires that ∃n.validIdx(t, n).
In a similar way to the case of a read operation, we can obtain that
validIdx(t, intHalf (cs.loct)) holds.

If t is a writing transaction (as.wrSett ̸= ∅), the precondition of dTMS2 requires
that dom(as.rdSett)∧ ⊆ last(as.L). We already have that at C1
validIdx(t, intHalf (cs.loct)) holds by Equations 3.12, 3.13, 3.14 and that
logicalGlb(cs) = loct by the dTMLSC invariant (see §3.4.2.1). By Equation 3.9,
we can infer that loct, in this case, corresponds to the last element of the ab-
stract memory as.L and by unfolding the validIdx definition, we can conclude
that rdSett ⊆ last(as.L).

In all other cases sc(cs, t, α) = ⊥.
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3.6 Related Work

In this work, we have defined durable opacity, a new correctness condition for STMs,
inspired by durable linearizability [23] for concurrent objects. The condition assumes a
history with crashes such that in-flight transactions are aborted (i.e., do not continue)
after a crash takes place, and simply requires that the history satisfies opacity [67, 68]
after the crashes are removed. This is a strong notion of correctness but ensures safety
for STMs in the same way that durable linearizability [23] ensures safety for concur-
rent objects. An alternative weaker correctness condition for persistent STMs is PSER
(persistent serializability) [123], which extends serializability to the persistency setting.

Our focus has been on the formalization of durable opacity and the development of an
example algorithm and verification technique. Our implementation assumes the per-
sistent SC memory model, which is a simplified model that does not consider explicit
persist instructions or instruction reorderings that may occur in a more realistic set-
ting. Khyzha et al. [90] have proposed a more sophisticated SC-based persistent memory
model. While their model does not consider TSO store buffers, it includes per-location
persistence buffers which are able to simulate asynchronous persist operations and persist
barriers.

Our example implementation, dTMLSC extends TML with a persistent undo log, and
associated modifications such as the introduction of a recovery operation. The undo log
technique is used by several persistent STMs [30,34,77,92,102,150] as means of achieving
failure atomicity. The technique requires, in the worst case scenario, two flushes (or two
persis barriers in case optimized flushes are used) per write, a flush of the corresponding
to the write log entry, and a flush of the actual write after the update of the log.

An alternative technique comprises using a redo log [62, 66, 101, 125, 141]. As discussed
by Ramalhete et al. [124] , this technique requires two persist barriers (assuming the
use of optimized flushes) per writing transaction, regardless of the number of updates
within the transaction. To elaborate, a writing transaction firstly updates the persistent
log with the new write, prior to updating the memory. The new write is flushed to
persistent memory only after the transaction has been successfully committed. In the
event of a crash, the writes stored in the persistent log are reapplied and subsequently,
the persistent log is emptied.

Another option [37] is based on shadowing data. This method requires constantly main-
taining a complete replica of the data. Other persistent transactional memory algorithms
rely on applying hardware modifications for achieving failure atomicity [15, 79, 87, 127,
137]. We decide here to not focus on hardware persistent memory transactions, as their
application require more intervening methods that go beyond the general applicability
of software transactional memories.

3.6.1 Persistent Memory Implementations

dTMLSC serves as a baseline example to demonstrate our verification method, which
does not specifically address implementation details such as garbage collection or per-
sistent memory allocation. For reference purposes, below we provide a brief overview of
well-established frameworks for adapting volatile algorithms to the persistency setting
including persistent STMs.
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Koburn et al. [34] implemented NV-heaps to integrate persistent objects into conven-
tional programs while addressing safety issues commonly found in predominantly persis-
tent memory models. NV-heaps utilize ACID transactions to ensure safety and enable
reasoning about the timing and order of data structure changes becoming persistent.
They offer type-safe pointers and employ garbage collection through reference count-
ing. However, NV-heaps have some drawbacks, including the high cost of transactions,
the use of locks that can result in unbounded rollback effects during crashes, and the
extensive logging required in persistent memory, leading to a trade-off between safety
and efficiency. Additionally, both NV-heaps and Mnemosyne [141] only support updates
to persistent memory within transactions and critical sections. Other systems like Sta-
sis [130] and BerkeleyDB [113] are also based on ACID transactions and offer consistency
guarantees for persistent memory in the realm of databases.

ATLAS [30] provides durability semantics for lock-based implementations. All the syn-
chronization operations are expressed in terms of lock and unlock. The consistency of
data structures is guaranteed only for the non-lock-objects as data structures can be
modified and temporarily violate invariants when locked. ATLAS ensures that the out-
ermost critical sections, which are protected by one or more mutexes, are failure-atomic
by identifying failure-atomic sections (FASEs). These sections ensure that if at least one
update to a persistent location within a FASE is durable, then all the updates within
that FASE are durable. An undo persistent log is kept that tracks the synchronization
operations and persistent stores and allows the recovery to rollback FASEs that were
interrupted by crashes. The log entries can be parallelized. A log entry consists of the
store type, size, and destination address, as well as the original value at that address. A
helper is used to minimize cache line flushes, which, along with logging, constitutes the
predominant efficiency costs.

Izrealevirz et al. [79], developed a logging mechanism based on undo and redo log prop-
erties named JUSTDO logging. This mechanism aims to reduce the memory size of
log entries while preserving data integrity after crash occurrences. Unlike optimistic
transactions [30], JUSTDO logging resumes the execution of interrupted FASEs to their
last store instruction and then executes them until completion. One disadvantage of this
strategy is that the FASEs cannot be rolled back after a system failure. As a consequence,
there is no tolerance for bugs inside the FASEs. In this system, it is assumed that the
cache memory is persistent, and the system also requires that all load/store instructions
access persistent data. A small log is maintained for each thread, that records its most
recent store within a FASE. The small per-thread logs simplify log management and
reduce memory requirements.

As mentioned in §2.4.3, Ben-David et al. [19], developed a system that can transform
algorithms that consist of read, write and CAS operations in shared memory, to equiv-
alent detectable suitable for persistent memory. The system aims to create concurrent
algorithms that guarantee consistency after a crash. This is done by introducing persist
checkpoints, which record the current state of the execution and from which the exe-
cution can continue after a fault. Two consecutive checkpoints form a capsule. When
a fault occurs inside a capsule the program execution is continued from the previous
capsule boundary. It is ensured that every capsule is correct (can be repeated safely).
The authors assume the Parallel Persistent Model (PPM) which consists of P processors,
each with a local ephemeral (volatile) memory of limited size and a sharing persistent
memory. Two persistent write buffers are kept along with a persistent bit in order to
solve write-after-read conflicts. A copy of the ephemeral variables or the valid write

80



buffer is kept in persistent memory at the end of each capsule. Those values are restored
after a crash. CAS operations are replaced with recoverable CAS operations [13], which
are wrapped with a mechanism that guarantees that CAS executions are not repeated
after a successful execution. The modified algorithm has constant computational and
recovery delays, both of which can be decreased by applying several optimizations.

Mnemosyne [141] provides a low-level interface to persistent memory with high-level
transactions based on TinySTM [56] and a redo log that is purposely chosen to reduce
ordering constraints. The log is flushed at the commit of each transaction. As a result, the
memory locations that are written by a transaction remain unmodified until committed.
Each read operation checks whether data has been modified and if so, returns the buffered
value instead of the value from the memory. The size of the log increases proportionally
to the size of the transaction, potentially making the checking time-consuming.

Joshi et al. [86], proposed durable hardware transactional memory (DHTM), a hardware-
based solution for ACID transactions, that use commercial HTM to provide atomic visi-
bility and extends it with hardware support for redo logging to provide failure atomicity.
The same logging infrastructure is also used to support L1 overflows and, thus, transac-
tions of larger size.

FliT [144] is a C++ algorithm that can be used for making any linearizable data structure
persistent. The primary optimization offered by FliT concerns minimizing the number of
flush operations required for durability. It achieves this by selectively flushing only those
writes that are subsequently read. The method for performing this involves utilizing
counters, to monitor ongoing stores for each variable. When a store operation begins,
it marks the corresponding memory location by incrementing its associated counter.
During load operations, the counter for a given memory location is checked, and a flush
instruction is only executed if the location is tagged. This approach ensures that flush
instructions are performed only when necessary. This technique provides flexibility in
terms of counter placement. Counters can be positioned adjacent to each variable or
stored in a separate hash table.

81



Chapter 4

Logics for Px86

In this chapter, we present a program logic that addresses programs following the Px86
memory model. In contrast to persistent sequential consistency (Chapter 4), Px86 is
a realistic memory model that addresses the out-of-order persistency of stores and the
asynchronous behavior of explicit persist instructions such as clflushopt. Concisely,
Px86 is a combination of relaxed buffered persistency with TSO. Our logic, Pierogi,
aims to help programmers reason about low-level operations such as memory accesses
and fences, as well as persistency primitives such as flushes. Pierogi benefits from a
simple underlying operational semantics based on views, is able to handle optimized flush
operations, and is mechanized in the Isabelle/HOL.

Specifically, Pierogi can reason efficiently about x86 persistency thanks to two key
recent advances: 1) Px86view [32] (which is known to be equivalent to the declarative Px86
model [78,122]), the view-based operational semantics of x86 persistency; and 2) the C11
Owicki-Gries logic [39, 40, 43] to reason about view-based operational semantics, which
we adapt to Px86view.

In the endeavor of establishing a logic for the Px86 model, we encountered two main
challenges.

(1) Capturing Program Correctness After a Crash . Our understanding of what
it means for a program to be correct after a system crash has evolved over time.
Similar to previous works on verifying Px86 programs [32,119], the initial version of
our logic, Pierogisimp, focused solely on reasoning about the behavior of a program
up to the first crash. In this version, system crashes do not correspond to state
transitions and, hence, do not affect the program state. Instead, the correctness
of persistent memory is defined as a predicate over the state’s memory component
and view components related to persistency. We have used Pierogisimp to verify
several litmus tests (see Chapter 5). Later, while trying to verify a Px86view version
of dTMLSC (Chapter 6), we recognized the importance of reasoning about program
behavior after a system restart due to a crash. Consequently, we have extended
Pierogisimp to allow operational reasoning about post-crash behavior, including
recovery and subsequent execution (Pierogifull). To establish Pierogifull, we
develop an extended version of Px86view, which includes a crash transition that
enables reasoning after a system crash. Furthermore, it incorporates a recovery
mechanism to signify when the system is under recovery. We denote the original
version of Px86view as αPx86view and the enhanced version as βPx86view.
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(2) Defining Adequate View-Based Assertions. While verifying the Px86view
version of dTMLSC (dTMLPx86), we realized that the assertions of Pierogisimp are
insufficient for reasoning about certain phenomena. Specifically, in the dTMLPx86
case, it is often necessary to reason about memory patterns by considering the order
in which writes occur. To address this, Pierogifull was enhanced with assertions
capable of expressing more complex memory patterns.

Throughout this chapter, the term Px86view will be used to collectively denote both the
αPx86view and βPx86view models. Furthermore, the term Pierogi will be used to refer
to both Pierogisimp and Pierogifull.

In this chapter, we begin with presenting the view-based operational semantics of x86 per-
sistency (§4.1). Next, we describe the assertion language and proof rules of Pierogisimp
and Pierogifull (§4.2). Afterward, we discuss the Isabelle/HOL mechanization (§4.3).
Finally, we discuss related work ( §4.4). The Isabelle/HOL mechanization of Pierogisimp
can be found at https://doi.org/10.6084/m9.figshare.18469103.v2. The Isabelle/HOL
mechanization of Pierogifull can be found at
https://doi.org/10.6084/m9.figshare.25037312.v2.

4.1 Px86view Syntax and Semantics

Both versions of our logic (Pierogisimp, Pierogifull) are built upon the Px86view se-
mantics proposed by Cho et al. [32]. We chose these semantics because they provide a
simple abstraction of the Px86 architectural details. In the following section, we will
present the original Px86view model as well as our modified version, βPx86view. We use
αPx86view and βPx86view for establishing Pierogisimp and Pierogifull respectively.

4.1.1 Programming Language

The syntax of our language is given below, which is the syntax from prior work [32].
We use precisely the same formalization to model programs as with the persistent SC
language (§3.2.1). A program is as before a function that maps a thread identifier (t)
and the label of the labeled statement that is currently executed by t to the labeled
statement that is going to be executed next. The control flow within each thread is
again tracked via the program counter function pc which records the program counter
of each thread. As before, we assume ι ∈ Lab is representing the initial label of each
thread, and ζ ∈ Lab the final label.

The Px86view programming language supports all the atomic primitives of the SC lan-
guage as well as the optimized flush (flushopt), the memory fence (mfence), and the
store fence (sfence) instructions of Px86 instruction set.
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v, u∈Val ≜ N x, y, . . .∈Loc o∈Dobj f ∈F a, b, . . .∈Reg t∈Tid ≜ N
i, j, k, . . .∈Lab â, b̂, . . . ∈ AuxVar ê ∈ AuxExp ::= v | â | ê+ê | · · ·

e ∈ Exp ::= v | a | e+e | · · · B ∈ BExp ::= true | B ∧B | · · ·
α ∈ ASt ::= skip | a := e | a := loadx | store x e

| sfence | mfence | flush x | flushopt x
| a :=CAS x e e | flush x | o.f

ls ∈ LSt ::=α goto j | if B goto j else to k | ⟨α goto j, â := ê⟩
Π ∈ Prog ≜Tid × Lab → LSt pc ∈ PC ≜ Tid → Lab

4.1.2 Px86view Semantics

We now introduce the Px86view semantics as proposed by Cho et al. [32]. As previously
mentioned, we will refer to the original Px86view model as αPx86view and to our enhanced
version as βPx86view.

4.1.2.1 The Px86view Machine State

Like previous view-based models, Px86view employs a non-standard memory capturing
all previously executed writes, alongside with so-called “thread views” that track several
position(s) of each thread in that history and enforce limitations on the ability of the
thread to read from and write to the memory. In addition, the thread views contain the
necessary information for determining the possible contents of the persistent memory
upon a system crash. Formally, Px86view’s memory and thread states are defined as
follows.

Definition 4.1.1 (Px86view’s memory). A memory M is a list of messages, the first
of which is a store CM : Loc → Val, and the subsequent messages have the form
⟨Loc :=Val⟩. Initially, we assume M = ⟨CM ⟩, where CM (x) = 0 for all x ∈ Loc. We
use w.loc and w.val to refer to the two components of a message w. We use standard
list notations for memories (e.g. M1 ++ M2 for appending memories, [w] for a singleton
memory, and |M | for the length of M). We refer to the indices of the memory list as
timestamps. For ts > 0, the location and a value of a message m are denoted as m.loc
and m.val, respectively. Every execution of a store x v instruction adds a message
⟨x := v⟩ to the memory list. We assume that the memory’s initial state includes a single
message that serves for initializing every location x (∈ Loc). In the case of αPx86view
the initial message maps every memory location to 0. On the contrary, in the case of
βPx86view the initial message maps every memory location x either to 0 (initial state)
or the last value persisted to x before a crash. A a := loadx instruction that happens
to read the first message of the memory returns M [0](x), otherwise it returns M [ts].val
(assuming M [ts].loc = x). In the case of the αPx86view model the value of M [0](x) is
always 0. To capture both scenarios, we use the notation M [ts] ≡ ⟨x := v⟩. We say
that a message with timestamp ts1 and location x is not overwritten from timestamp
p’s perspective if the following holds: ∀ts ∈ (ts1, p].M [ts].loc ̸= x. We denote this as
x ̸∈ M(ts2..ts1]. Furthermore, we use ⊔ for obtaining the maximum among timestamps
(i.e. ts1 ⊔ ts2 = max(ts1, ts2)), and extend this notation pointwise to functions.

Definition 4.1.2 (Px86view’s thread state). A thread state T ∈ Thread is a record
consisting of the following fields: coh : Loc → N, vrNew : N, vpReady : N, vpAsync : Loc →
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Figure 4.1: A snapshot of the Px86view memory and a thread state view.

N, and vpCommit : Loc → N. The above components of the thread states are called views.
A thread state T ∈ Thread is a record of views of M and registers. Each Px86view
instruction moves the views in such way that constrain its ordering with previously or
later issued instructions and reflect its effect in persistent and volatile memory. We
use standard function/record update notation (e.g. T ′ = T [coh(x) 7→ ts] denotes the
thread state obtained from T be modifying the x entry in the coh component of T to
ts). In addition, 7→⊔ is used to incorporate certain timestamps in fields (e.g. T [vrNew 7→⊔
ts] denotes the thread state obtained from T be modifying the vrNew component of T
to T.vrNew ⊔ ts). We denote by T.maxcoh the maximum among the coherence view
timestamps (T.maxcoh =

⊔
x T.coh(x)). In addition, we denote by σ.maxpCommit(x)

the maximum among the persistency view timestamps for location x (σ.maxpCommit =⊔
t σ.T(t).vpCommit(x)). Fig. 4.1 depicts a memory (M) that contains the initial message,

the message ⟨x := 1⟩ and the message ⟨x := 3⟩. The arrow p represents a view which
equals to timestamp 2.

In the table below, we provide a short description of the views of the thread state of
Px86view. We denote the pre-state state as σ, the post-state as σ′, and the executing
thread as t.

View: coh : Loc → N

Moved by: store, load,CAS: Both a store and a successful CAS on x will update
σ.T(t).coh(x) to match the length of the memory in the pre-state. A load and a
failed CAS on x updates σ.T(t).coh(x) to the timestamp of the message of the
read value.

Purpose: In conjunction with vrNew, determines the range of observable values by t for
the specified location. When a memory message with the location x is about to be
added to the memory by a store or a successful CAS operation, its timestamp in
the post-state is equal to σ.T(t).coh(x). Additionally, a message that is accessed
by a load or CAS instruction must have a timestamp that is greater than or equal
to the value of σ.T(t).coh(x).

View: vrNew : N

Moved by: mfence, load(external), CAS(fail-external/success): When t executes an
mfence, σ′.T(t).vrNew is updated to the timestamp of the latest write performed by
t provided that it is greater than the current value of vrNew (σ.T(t).vrNew). When
t executes an external load or an external failed CAS, vrNew is updated to the
timestamp of the read message, again provided that it is greater than the current
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value of vrNew. When t executes a successful CAS it updates σ′.T(t).vrNew to the
length that memory had in the pre-state.

Purpose Together with coh determines the set of visible values for the given location to
t. No memory message that is read by t (via a load or a CAS instruction) obtains
a timestamp that is overwritten from the (σ.T(t).vrNew)’s perspective.

View: vpReady : N

Moved by: load(external), CAS(fail-external/success), mfence, sfence: Instructions
load(external), CAS(fail-external/success) and mfence update σ′.T(t).vpReady in
the same way that they update σ′.T(t).vrNew. The sfence instruction updates
σ′.T(t).vpReady in similar manner as mfence.

Purpose: It is used for ordering load sfence, mfence and CAS instructions with
subsequent flushopt instructions.

View: vpAsync : Loc → N

Moved by: flush, flushopt: When t executes a flush on x, σ′.T(t).vpAsync(x) is updated
to the timestamp of the latest write performed by t provided that it is greater than
σ′.T(t).vpAsync(x). When t executes a flushopt on x, vpAsync(x) is updated to the
maximum between σ.T(t).coh(x) , σ.T(t).vpReady(x) and σ.T(t).vpAsync(x).

Purpose: Determines the set of values that may hold for a given location in persistent
memory after the execution of an sfence preceded by the execution of a flushopt.
Any memory message the value of which is about to be persisted after the execution
of a barrier (sfence,mfence,CAS), is not overwritten from the σ′.T(t).vpAsync’s
perspective in the post-state of a flushopt execution.

View: vpCommit : Loc → N

Moved by: flush, CAS(success), mfence and sfence: A flush on x updates
σ′.T(t).vpCommit(x) to the maximum between the timestamp of the latest write by t,
and σ.T(t).vpCommit(x). Instructions sfence and mfence update σ′.T(t).vpCommit(x)
of all x ∈ Loc to the maximum between σ.T(t).vpAsync(x) and σ.T(t).vpCommit(x).
A successful CAS instruction updates σ′.T(t).vpCommit(x) to the length that the
memory had in the pre-state.

Purpose: Contributes to determining the set of values that may hold for a given location
in persistent memory. The set of values for a location x that a thread can observe
in persistent memory is common for all the threads. The set is determined by the
maximum value of σ.T(t).vpCommit(x) among all the threads (σ.maxpCommit). No
memory message whose value reached the persistent memory after the execution of
a persistent barrier or a flush instruction has a timestamp that is overwritten from
the σ.maxpCommit’s perspective after the completion of a flush or persist barrier.
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Below we define the αPx86view’s and βPx86view’s machine state. The βPx86view state
consists of all the components of αPx86view, but also adopts the recovery mechanism
used in the persistent SC semantics (§3.2.2.1), in order to signify when a system is under
recovery. Specifically, it includes the rec : bool component. When a crash occurs, rec
is assigned the value true to signal the initiation of an implementation-specific recovery
process. After the recovery process finishes its execution, rec is reset to false.

Definition 4.1.3 (αPx86view’s machine state). A αPx86view machine state is a
tuple σ = ⟨pc,T,M,G⟩ where pc : Tid → Lab is a mapping assigning the next program
label to be executed by each thread, T : Tid → Thread is a mapping assigning the
current thread state to each thread, M ∈ Memory is the current memory, and G :
AuxVar → Val is storing the current values of the auxiliary variables. We assume that
G is extended to expressions ê ∈ AuxExp in a standard way.

Definition 4.1.4 (βPx86view’s machine state). A βPx86view machine state is a tuple
σ = ⟨pc, rec,T,M,G⟩ where rec : bool is a flag that indicates when a recovery process is
in progress. In the event of a crash, rec is set to true to indicate that an implementation-
specific recovery process is about to start its execution. Once the recovery process is
completed, rec is reset to false. All the remaining components of the machine state are
defined as in in Def. 4.1.3.

We denote the components of a machine state σ by σ.pc, σ.T, etc. For both αPx86view
and βPx86view in the initial state (σinit), pc(t) = ι for all t ∈ Tid, regs(t) r = 0 for all
t ∈ Tid and r ∈ Reg, and G(a) = 0 for all a ∈ AuxVar. Furthermore, in the initial
state, the memory M contains only the initial message which maps all the memory
locations (x ∈ Loc) to 0. In the case of βPx86view, also rec = false.

4.1.2.2 Px86view Transitions

The transitions presented below closely follow the model in [32] with minor presentational
simplifications. Note that as in §3.2.2.3 we assume that writes persist atomically at the
location granularity.

Transitions under the αPx86view model. The transitions of αPx86view are presented
in Fig. 4.2 and Fig. 4.3.

(program-normal)
pc(t) = i Π(t, i) = α goto j

⟨T(t),M⟩ α−→ ⟨T ′,M ′⟩
pc′ = pc[t 7→ j] T′ = T[t 7→ T ′]

⟨pc,T,M,G⟩ ⇒Π ⟨pc′,T′,M ′, G⟩

(program-if)
pc(t) = i Π(t, i) = if B goto j else to k

pc′ = pc

[
t 7→

{
j T(t).regs(B) = true

k T(t).regs(B) = false

]
⟨pc,T,M,G⟩ ⇒Π ⟨pc′,T,M,G⟩

(program-ghost)
pc(t) = i Π(t, i) = ⟨α goto j, â := ê⟩

⟨T(t),M⟩ α−→ ⟨T ′,M ′⟩
pc′ = pc[t 7→ j] T′ = T[t 7→ T ′] G′ = G[â 7→ G(ê)]

⟨pc,T,M,G⟩ ⇒Π ⟨pc′,T′,M ′, G′⟩

Figure 4.2: Control flow transitions of αPx86view for a program Π
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(assign)
α = a := e

v = T.regs(e)
T ′ = T [regs(a) 7→ v]

⟨T,M⟩ α−→ ⟨T ′,M⟩

(store)
α = store x e
v = T.regs(e)

M ′ = M ++ [⟨x := v⟩]
T ′ = T [coh(x) 7→ |M |]
⟨T,M⟩ α−→ ⟨T ′,M ′⟩

(load-internal)
α = a := loadx
M [ts] = ⟨x := v⟩
T.coh(x) = ts

T ′ = T [regs(a) 7→ v]

⟨T,M⟩ α−→ ⟨T ′,M⟩

(load-external)
α = a := loadx
M [ts] = ⟨x := v⟩
T.coh(x) < ts

x ̸∈ M(ts..T.vrNew]

T ′ = T


regs(a) 7→ v,
coh(x) 7→ ts,
vrNew 7→⊔ ts,
vpReady 7→⊔ ts


⟨T,M⟩ α−→ ⟨T ′,M⟩

(sfence)
α = sfence

T ′ = T

[
vpReady 7→⊔ T.maxcoh,
vpCommit 7→⊔ T.vpAsync

]
⟨T,M⟩ α−→ ⟨T ′,M⟩

(flush)
α = flush x

T ′ = T

[
vpAsync(x) 7→⊔ T.maxcoh,
vpCommit(x) 7→⊔ T.maxcoh

]
⟨T,M⟩ α−→ ⟨T ′,M⟩

(flushopt)
α = flushopt x

T ′ = T [vpAsync(x) 7→⊔ T.coh(x) ⊔ T.vpReady]

⟨T,M⟩ α−→ ⟨T ′,M⟩

(mfence)
α = mfence

T ′ = T

[
vrNew 7→⊔ T.maxcoh,
vpReady 7→⊔ T.maxcoh

]
⟨T,M⟩ α−→ ⟨T ′,M⟩

(cas-success)
α = a :=CAS x e1 e2

v1 = T.regs(e1)
v2 = T.regs(e2)
M [ts] = ⟨x := v1⟩
x ̸∈ M(ts..|M | − 1]

M ′ = M ++ [⟨x := v2⟩]

T ′ = T


regs(a) 7→ true,
coh(x) 7→ |M |,
vrNew 7→⊔ |M |,
vpReady 7→⊔ |M |,
vpCommit 7→⊔ T.vpAsync


⟨T,M⟩ α−→ ⟨T ′,M ′⟩

(cas-fail-internal)
α = a :=CAS x e1 e2

M [ts] = ⟨x := v⟩
T.coh(x) = ts

(x ∈ M(ts..|M | − 1] ∨ v ̸= T.regs(e1))

T ′ = T
[
regs(a) 7→ false

]
⟨T,M⟩ α−→ ⟨T ′,M⟩

(cas-fail-external)
α = a :=CAS x e1 e2

M [ts] = ⟨x := v⟩
T.coh(x) < ts

(x ∈ M(t..|M | − 1] ∨ v ̸= T.regs(e1))

T ′ = T


regs(a) 7→ false,
coh(x) 7→ ts,
vrNew 7→⊔ ts,
vpReady 7→⊔ ts


⟨T,M⟩ α−→ ⟨T ′,M⟩

Figure 4.3: Instruction transitions of Px86view for a program Π
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Transitions under the βPx86view model. The instruction transitions of βPx86view
remain consistent with those of αPx86view (Fig. 4.3). The control flow transitions are
updated as follows (Fig 4.4).

(program-normal)
pc(t) = i Π(t, i) = α goto j

⟨T(t),M⟩ α−→ ⟨T ′,M ′⟩
pc′ = pc[t 7→ j] T′ = T[t 7→ T ′]

⟨pc, false,T,M,G⟩ ⇒Π ⟨pc′, false,T′,M ′, G⟩

(program-if)
pc(t) = i Π(t, i) = if B goto j else to k

pc′ = pc

[
t 7→

{
j T(t).regs(B) = true

k T(t).regs(B) = false

]
⟨pc, false,T,M,G⟩ ⇒Π ⟨pc′, false,T,M,G⟩

(program-ghost)
pc(t) = i Π(t, i) = ⟨α goto j, â := ê⟩

⟨T(t),M⟩ α−→ ⟨T ′,M ′⟩
pc′ = pc[t 7→ j] T′ = T[t 7→ T ′]

G′ = G[â 7→ G(ê)]

⟨pc, false,T,M,G⟩ ⇒Π ⟨pc′, false,T′,M ′, G′⟩

(crash)
T.coh = (λx.0) T.vrNew = 0

T.vpReady = 0 T.vpAsync = (λx.0)

T.vpCommit = (λx.0) ∀x ∈ Loc. CM (x) ∈ [x]P(⟨T,M⟩)
pc′ = pc[syst 7→ Recpending ]

⟨pc, false,T,M,G⟩ ⇒Π ⟨pc′, true, λt ∈ Tid.T, ⟨CM ⟩, G⟩

Figure 4.4: Updated control flow transitions of Px86view for a program Π

4.1.2.3 Modelling Crashes

Crashes under the αPx86view model : The above operational definitions naturally
induce a notion of a execution (or a “run”) of Px86view on a certain program Π starting
from some initial state of the form ⟨λt. ι,T,M,G⟩. A system crash might occur at any
point during the execution. Again, following the model of [32], the persistent memory
(PM) is not modeled as a concrete part of the state. Instead, the possible contents of
the PM can be inferred from the machine state (specifically from the memory and the
vpCommit views of the different threads), as defined next.

Definition 4.1.5. A persistent memory PM : Loc → Val is possible in a state σ if
for every x ∈ Loc, there exists some ts such that σ.M [ts] = ⟨x :=PM (x)⟩ and x ̸∈
σ.M(ts..σ.maxpCommit(x)].

Notice that the machine state of Px86view does not include any component designated to
recovery. This is because the Px86 semantics adequately describe the state immediately
after a system crash, but do not address recovery processes. As a result, Pierogisimp is
limited to reasoning about program states up until a crash and its immediate aftermath.

Crashes under the βPx86view model : The crash transition (Fig. 4.4) creates a
new initial message and resets the views of each thread. This allows reasoning about
programs after a crash, which prior works [24, 32], do not handle. Specifically, the state
CM is possible immediately after a crash in state σ if for every x ∈ Loc, there exists
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some ts such that σ.M [ts] ≡ ⟨x :=CM (x)⟩ and x ̸∈ σ.M(ts..σ.maxpCommit(x)]. To
formalise this, we use the persistent memory view expression (see §4.2.1.2). We adopt
the same assumption for recovery as in Chapter 3. Specifically, we assume that recovery
is executed by a system unique system thread syst that is different from any program
thread. Recovery is only enabled in state σ if σ.rec holds. Moreover, we assume a
special label Recpending , which represents the label of the first recovery instruction. Upon
completion of the recovery procedure, the pcsyst is set to Reccomplete , and we assume that
there is a transition from this state to a state in which rec is set to false.

4.2 The Pierogi Proof Rules and Reasoning Principles

We proceed with a description of our verification framework. As with prior work [39], the
view-based semantics for persistent TSO [32] allows us to use the standard Owicki–Gries
rules [8,115] for compound statements. The main adjustment is the introduction of a new
specialised assertion language capable of expressing properties about the different “views”
described intuitively in §2.2.2. As such, since view updates are highly non-deterministic,
the standard “assignment axiom” of Hoare Logic (and by extension Owicki–Gries) is no
longer applicable. Moreover, unlike SC, reads in a weak memory setting have a side-
effect: their interaction with the memory location being read causes the view of the
executing thread to advance. Therefore, we resort to a set of proof rules that describe
how views are modified and manipulated, as formalised by our view-based assertions.

4.2.1 View-Based Expressions

In this section we will discuss the view-based expressions /assertions of Pierogi. As
with prior work on the RC11 model [88], we interpret Pierogi expressions directly over
a view-based state. We use expressions tailored for the view-based Px86view model [32],
which allow us to express relationships between different system components, including
the persistent memory.

4.2.1.1 Informal Description of View-Based Expressions

In this section we will discuss the view-based expressions of Pierogisimp and Pierogifull
collectively. Our expressions fall into one of five categories: 1) current view expressions,
which describe the current views of different system components (e.g. the persistent
view); 2) conditional view expressions [39], which describe a view on a location after
reading a particular value on a different location; 3) last view expressions, which hold if a
component is viewing the last write to a location; 4) last entry expressions, which return
the timestamp of a memory message before a given limit and 5) write-count expressions,
which describe the number of writes to a location.

Current view expressions: Our current view expressions comprise [x]t, [x]P and [x]At ,
as described below; as shown in §2.2.2, each of these expressions describes a set of possible
values.

[x]t denotes the thread view of thread t: the set of values t may read for x.
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[x]P denotes the persistent memory view: the set of values that x may hold in (persistent)
memory.

[x]At denotes the asynchronous memory view of thread t: the set of values that can be
persisted after a barrier instruction (sfence/mfence/RMW) is executed by t (see
rule OP in Fig. 4.7). Asynchronous views are updated after executing a flushopt;
however, unlike persistent memory views, the values in asynchronous views are not
guaranteed to persist until a subsequent barrier is executed by the same thread.

Conditional view expression: The conditional view expression is of the form ⟨x, v⟩[y]t,
and captures the crux of message passing.

⟨x, v⟩[y]t returns a set of values that t may read for y after it reads value v for x. In
particular, if ⟨x, v⟩[y]t = S holds for some set S and t executes a := loadx, then in
the state immediately after the load, if a = v, then [y]t ⊆ S (see LP2 in Fig. 4.7).

Last-view expressions: Last-view expressions (cf. [48]) are boolean-valued and hold
if a particular component is synchronized (i.e. observes the latest value) on the given
location. Such expressions provide determinism guarantees on load and flush. For
instance, if the view of t is the last write on x, then a read from x by t will load this last
value.

VxWt holds iff t is currently viewing the last write to x. Thus, for example, if VxWt holds,
then a load from x by t reads the last write to x. Note that unlike architectural
operational models [131], in the view model [32], writes are visible to all threads
as soon as they occur.

VxWFt holds iff a flush of x by t is guaranteed to flush the last write to x to persistent
memory.

VxWMt holds iff after performing an mfence the thread view of t will only contain the last
write to x, thus a future read at x will definitely return the last write to x.

Vx : vW holds iff the last written value to x is v.

Last-entry expressions: Last-entry expressions return the timestamp of the memory
message with a location equal to the given location and a timestamp less or equal to the
given limit.

VxWt holds iff t is currently viewing the last write to x. Thus, for example, if VxWt holds,
then a load from x by t reads the last write to x. Note that unlike architectural
operational models [131], in the view model [32], writes are visible to all threads
as soon as they occur.

LE(x) returns the timestamp of the last memory message on location x.

LE(ts, x) returns the timestamp of the last memory message on location x, before the
timestamp ts.

LEcoh(y, t, x) returns the timestamp of the last memory message on location x before the
timestamp that corresponds to the coherence view of thread t for location y.
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x⃗ returns the value of the last write at location x.

Write-count expression: Lastly, the write-count expression is of the form |x, v|, as
described below. This expression is useful for inferring view expressions from known
facts about the number of writes in the system with a particular value (see Fig. 5.8).

|x, v| returns the number of writes to x with value v. If |x, v| = n and t writes to y ̸= x,
or writes a value u ̸= v, then |x, v| = n continues to hold afterwards.

4.2.1.2 The Semantics of Pierogi Expressions

The semantics of Pierogisimp expressions: We now present the formal definitions
of the subset of the expressions introduced in §4.2.1 that belongs to Pierogisimp, in terms
of αPx86view machine states. When formalizing view expressions, we start with auxiliary
functions that return the sets of observable timestamps visible to the components in
question, then extract the values in memory corresponding to these timestamps. To
facilitate this, we define:

MemLoc(x, ts,M) ≜ if (ts = 0) then x else M [ts].loc (4.1)

MemVal(ts,M) ≜ if (ts = 0) then 0 else M [ts].val (4.2)

Vals(M,TS) ≜ {MemVal(ts,M) | ts ∈ TS} (4.3)

where M ∈ Memory, x ∈ Loc and TS is a set of timestamps. Def. 4.1 returns the
location of the message that corresponds to a given timestamp ts in memory M . If the
given timestamp is 0, then the corresponding message is the initial message, and thus,
the returned location is equal to the location provided as an argument, x. Likewise,
Def. 4.2 returns the value of the message that corresponds to a given timestamp ts in
memory M . If the corresponding message is the initial, then the returned value is 0.
Finally, Def. 4.3 returns the values at the given set of timestamps, TS.

Thread view: To define the meaning of the thread view expression, [x]t, we use:

TSOF
t (σ, x, ts) ≜ {ts′ | MemLoc(x, ts′, σ.M) = x ∧ σ.T(t).coh(x) ≤ ts′ ∧ x ̸∈ σ.M(ts′..ts]}
TSt(σ, x) ≜ TSOF

t (σ, x, σ.T(t).vrNew)

TSOF
t (σ, x, ts) returns the set of timestamps that are observable from timestamp ts for

thread t to read for location x in state σ; and TSt(σ, x) returns the set of timestamps
that are observable for t to read x in σ. Note that after instantiating t to σ.T(t).vrNew
in TSOF

t (σ, x, ts), we obtain the premises of the load rules in Fig. 4.3. Then, [x]t ≜
λσ.Vals(σ.M,TSt(σ, x)), i.e. is the set of values in σ.M corresponding to the timestamps
in TSt(σ, x).

Persistent memory view: For the persistent memory view expression, [x]P, we use:

TSP(σ, x) = {ts | MemLoc(x, ts, σ.M) = x ∧ x ̸∈ σ.M(ts..σ.maxpCommit(x)]}
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which returns the set of timestamps that are observable to the persistent memory for x
in σ. Then, [x]P ≜ λσ.Vals(σ.M,TSP(σ, x)). Note that the second conjunct within the
definition of TSP(σ, x) is precisely the condition that links Px86view states to PM states
(Def. 4.1.5). Given this definition, we have:

Proposition 1. A persistent memory PM : Loc → Val is possible in a state σ iff
PM (x) ∈ [x]P(σ) for every x ∈ Loc.

Asynchronous memory view: To define the meaning of the asynchronous memory
view, [x]At , we use:

TSAt (σ, x) ≜ {ts | MemLoc(x, ts, σ.M) = x ∧ x ̸∈ σ.M(ts..σ.T(t).vpAsync(x)]}

which returns the timestamps of the asynchronous view of thread t in location x and
state σ. Then, as before, [x]At ≜ λσ.Vals(σ.M,TSAt (σ, x)).

Conditional view: The functions used to define conditional memory view, ⟨x, v⟩[y]t,
are slightly more sophisticated than those above. We define:

TSOV
t (σ, x, v) ≜


ts′ ∃ts ∈ TSt(σ, x). MemVal(ts, σ.M) = v ∧

ts′ = if ts = σ.T(t).coh(x) then σ.T(t).vrNew
else ts ⊔ σ.T(t).vrNew


TSCOt (σ, x, v, y) ≜

⋃
{TSOF

t (σ, y, ts) | ts ∈ TSOV
t (σ, x, v)}

where TSOV
t (σ, x, v) returns the set of timestamps that t can observe for x with value

v. Assuming ts is a timestamp that t can observe for x, and the value for x at
ts is v, the corresponding timestamp ts′ that TSOV

t (σ, x, v) returns is σ.T(t).vrNew if
t’s coherence view for x is ts, and the maximum of ts and σ.T(t).vrNew, otherwise.
Given this, TSCOt (σ, x, v, y) returns the timestamps that t can observe for y, from any
timestamp ts ∈ TSOV

t (σ, x, v). Finally, the set of conditional values is defined by
⟨x, v⟩[y]t ≜ λσ.Vals(σ.M,TSCOt (σ, x, v, y)).

Last view expressions: We use the following auxiliary definition:

LE(M,x) ≜
⊔
{ts | MemLoc(x, ts,M) = x}

which returns the timestamp of the last write to x in M . Then, the last view assertions
are given by:

• VxWt ≜ λσ. TSt(σ, x) = {LE(σ.M, x)}, i.e. t’s view of x in σ is the last write to x
in σ.

• VxWFt ≜ λσ. LE(σ.M, x) ≤ σ.T(t).maxcoh ⊔ σ.maxpCommit(x), i.e. the maximum of
t’s maximum coherence view and the maximum commit view of x (over all threads)
is beyond the last write to x in σ. This means that executing a flush x operation
in t will cause the last write of x to be flushed (see Flush rule in Fig. 4.3).

• VxWMt ≜ λσ. LE(σ.M, x) ≤ σ.T(t).maxcoh i.e. the t’s maximum coherence view is
beyond the last write to x in σ. This means that executing a mfence operation
in t will cause the thread view of x to contain of the last write to x. In this way,
a future read of x is guaranteed to return the last write to x. (see mfence rule in
Fig. 4.3).

93



• Vx : vW ≜ λσ. MemVal(LE(σ.M, x), σ.M) = v i.e. the last written value to x is v.

Value-count expression: Finally, the value count expression is defined as follows:

|x, v| ≜ λσ. |{ts | MemVal(ts, σ.M) = v ∧MemLoc(x, ts, σ.M) = x}|

The semantics of Pierogifull expressions. Pierogifull includes all the view ex-
pressions of Pierogisimp with the addition of four more last entry expressions. To ac-
commodate the fact that the first message of a βPx86view memory corresponds to a store
(CM : Loc → Val) which may not map all the memory locations to value 0, we update
the auxiliary definitions Memloc (4.1), MemVal (4.2) and Vals (4.3) as follows:

MemLoc(x, ts,M) ≜ if (t = 0) then x else M [ts].loc (4.4)

MemVal(x, ts,M) ≜ if (t = 0) then M [0](x) else M [ts].val (4.5)

Vals(TS, x,M) ≜ {MemVal(x, ts,M) | ts ∈ TS} (4.6)

All the Pierogisimp view expressions introduced above retain their structure. How-
ever, when utilized, MemLoc, MemVal, and Vals refer to equations 4.4, 4.5, and 4.6,
respectively.

Next, we present the formalization of the four additional last entry expressions of Pierogifull,
namely LE(x) , LE(t, x), LE(x) and x⃗. These expressions enable reasoning about written
values before a given timestamp.

Their formal definition starts with the following auxiliary definition:

MemLastEntryLim(x, t,M) ≜
⊔

{ts | MemLoc(x, t,M) = x ∧ x ≤ t},

which, assuming t ∈ [0, |M |) returns the maximum timestamp of the memory messages
with location x and timestamp less or equal to timestamp t.

LE(x) ≜ λσ.MemLastEntryLim(x, |σ.M | − 1, σ.M)

LE(t, x) ≜ λσ.MemLastEntryLim(x, t, σ.M)

LEcoh(y, t, x) ≜ λσ.MemLastEntryLim(x, σ.T(t).coh(y), σ.M)

Finally, the expression x⃗ returns the value of the last write at location x in the given
state:

x⃗.σ ≜ MemVal(x, LE(x).σ, σ.M)
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4.2.1.3 A Program Execution Example

(a)
store x 1; (b)
flushopt x; (c)
sfence; (d)
store y 1 (e)

Figure 4.5: A depiction of a subset of the current views, the thread state (T ), and
Px86view memory list (M) after the execution of each instruction of the program below.
Its message of the memory is indexed with a timestamp. The first message corresponds
to the initial message of the memory. The highlighted components of the state capture
the effects of the preceding instruction.

Fig. 4.5 illustrates how the view components (see Table in 4.1.2.1) of the thread state
T as well as the thread view, persistent memory view and asynchronous memory view
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expressions are changing during the execution of program Fig. 2.7d. Its execution state is
denoted with a letter, starting with a for the initial state. In the beginning, the memory
σ.M includes only the initial message, and all the view components of t’s thread state are
0 (pointing to the initial message). The set of view expressions for thread t illustrated in
V contain only the value 0. After the execution of store x 1 the message ⟨x := 1⟩ is added
to the memory. The store transition causes the coherence view of t for x (σ.T(t).coh(x))
to become 1. This impacts the thread view expression of x for t which now contains the
value 1. Since neither the σ.T(t).vpCommit(x) nor the σ.T(t).vpAsync(x) view alters, the
persistent memory view for x and the asynchronous memory view of t for x continues to
contain the value of the initial message for x (0) as well as the values of the messages
with location x that follows it (1). The view expressions in V of thread t for location y
remain the same. The execution of the instruction flushopt x causes the σ.T(t).vpAsync(x)
to point to message 1. As a result, the asynchronous memory view of x for t is updated
to contain only the value 1. The sfence instruction causes the σ.T(t).vpCommit(x) view
for t to point to the same message as the σ.T(t).vpAsync(x) view. Thus the persistent
memory view of t for x becomes equal to its asynchronous memory view. Finally, the
execution of the instruction store y 1 adds to memory M the message ⟨y := 1⟩. All the
views in T remain the same apart from the coherence view of y (σ.T(t).coh(y)) which
now points to message 2. As a result the thread view of t for y is updated to contain only
the new written value 1. The persistent view and the asynchronous memory view for y
are updated to contain the values 0 and 1. The view expressions for location x remain
the same as before.

4.2.2 Owicki–Gries Reasoning

We now present the Pierogisimp and Pierogifull proof systems, as extensions of Hoare
Logic with Owicki–Gries reasoning to account for concurrency. The main differences
between Pierogisimp /Pierogifull and standard Owicki–Gries are that 1) our program
annotations contain view-based assertions that allow reasoning about weak and persistent
memory behaviors; and 2) we define a crash invariant to describe the recoverable state of
the program after a crash. As explained in the remainder of this section, the definition of
the crash invariant differs for Pierogisimp and Pierogifull. Our proof rules are syntactic,
and thus can be understood and used without having to understand the details of the
underlying Px86view model.

We let Assertionpv be the set of assertions (i.e. predicates over αPx86view (resp.
βPx86view) states) that use view-based expressions (§4.2.1). A proof outline is a tu-
ple (in, ann, I ,fin), where in,fin ∈ Assertionpv are the initial and final assertions, I
is the crash invariant and ann is an annotation function that models program annota-
tions. Specifically, ann ∈ Ann = Tid × Lab → Assertionpv, associates each program
point (t, i) with its associated assertion. In the case of Pierogisimp the crash invariant,
I ∈ Inv ⊂ Assertionpv, is defined over persistent views only, i.e. it only comprises
the persistent view expressions of the form [x]P. However, in the case of Pierogifull the
crash invariant is defined over any view expression (I ∈ Assertionpv). A proof outline is
a tuple (in, ann, I ,fin), where in,fin ∈ Assertionpv are the initial and final assertions.

Definition 4.2.1 ( Pierogisimp Valid proof outline). A Pierogisimp proof outline
(in, ann, I ,fin) is valid for a program Π iff the following hold:

Initialisation. For all t ∈ Tid, in ⇒ ann(t, ι).
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Finalisation. (
∧

t∈Tid ann(t, ζ)) ⇒ fin.

Local correctness. For all t ∈ Tid and i ∈ Lab, either:

• Π(t, i) = α goto j and
{
ann(t, i)

}
α
{
ann(t, j)

}
; or

• Π(t, i) = if B goto j else to k and both ann(t, i) ∧ B ⇒ ann(t, j) and
ann(t, i) ∧ ¬B ⇒ ann(t, k) hold; or

• Π(t, i) = ⟨α goto j, â := ê⟩ and
{
ann(t, i)

}
α
{
ann(t, j)[ê/â]

}
.

Stability. For all t1, t2 ∈ Tid such that t1 ̸= t2 and i1, i2 ∈ Lab:

• if Π(t1, i1) = α goto j, then
{
ann(t2, i2) ∧ ann(t1, i1)

}
α
{
ann(t2, i2)

}
;

• if Π(t1, i1) = ⟨α goto j, â := ê⟩, then{
ann(t2, i2) ∧ ann(t1, i1)

}
α
{
ann(t2, i2)[ê/â]

}
.

Persistence. There exists t ∈ Tid such that for all i ∈ Lab, ann(t, i) ⇒ I .

Definition 4.2.2 ( Pierogifull Valid proof outline). A Pierogifull proof outline
(in, ann,fin, I ) is valid for a program Π iff the following hold:

Initialisation. For all t ∈ Tid, in ⇒ I ∧ ann(t, ι).

Finalisation. I ∧ (
∧

t∈Tid ann(t, ζ)) ⇒ fin.

Local correctness. For all t ∈ Tid and i ∈ Lab, either:

• Π(t, i) = α goto j and
{
I ∧ ann(t, i)

}
α
{
I ∧ ann(t, j)

}
; or

• Π(t, i) = if B goto j else to k and both
– I ∧ ann(t, i) ∧B ⇒ ann(t, j) and
– I ∧ ann(t, i) ∧ ¬B ⇒ ann(t, k) hold; or

• Π(t, i) = ⟨α goto j, â := ê⟩ and
{
I ∧ ann(t, i)

}
α
{
(I ∧ ann(t, j))[ê/â]

}
.

Stability. For all t1, t2 ∈ Tid such that t1 ̸= t2 and i1, i2 ∈ Lab:

• if Π(t1, i1) = α goto j, then
{
I ∧ ann(t2, i2) ∧ ann(t1, i1)

}
α
{
ann(t2, i2)

}
;

• if Π(t1, i1) = ⟨α goto j, â := ê⟩, then
{
I ∧ ann(t2, i2) ∧ ann(t1, i1)

}
α
{
ann(t2, i2)[ê/â]

}
.

Persistence. Both of the following hold:

• for all α ∈ Recovery,
{
I
}
α
{
I
}

•
{
I
}
crash

{
I
}

For both Def. 4.2.1 and Def. 4.2.2 Initialisation (resp. Finalisation) ensures that the initial
(resp. final) assertion of each thread holds in the initial (resp. final) state. Local
correctness ensures the validity of the program annotation of each thread, while global
correctness ensures the stability of the program annotation of each thread under the
execution of other threads. In essence, the local correctness proof for a thread t checks for
each atomic statement of t if its post-condition (given as annotation) can be established
by its pre-condition (given as annotation). Similarly, the global correctness proof for a
thread t checks that the pre-condition of each atomic statement of t is stable against the
atomic statements of the other threads. Persistence in the case of αPx86view ensures that
the crash invariant holds at every program point for some thread, excluding the crash
and recovery event, which do not correspond to operational transitions. Persistence in
the case of βPx86view ensures that the crash invariant holds at every program point for
some thread, including the crash transition and the recovery process.
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4.2.3 Pierogi Proof Rules ( )

One of the main benefits of Pierogi is the ability to perform proofs at a high level of
abstraction. In this section, we provide the set of proof rules that we use. The annotation
within a proof outline is, in essence, an invariant mapping of each program location to an
assertion that holds at the program location. Thus, we prove local correctness by checking
that each atomic step of a thread establishes the assertions in that thread. Similarly,
we check stability by checking each assertion in one thread against each atomic step of
the other threads. To enable proof abstraction, we introduce a set of proof rules that
describe the interaction between the assertions from §4.2.1 and the atomic program steps.
We will use the standard decomposition rules from Hoare Logic to reduce proof outlines
and enable our rules over atomic steps to be applied.

In summary, to show that a proof outline is valid under Pierogisimp (Def. 4.2.1) or
Pierogifull (Def. 4.2.2) we use two types of rules: standard decomposition rules and
rules for atomic statements and View-Based Assertions. Furthermore, when needed, we
use a well-formedness condition which is common for both Pierogisimp and Pierogifull.
In the remainder of this section, we provide a summary of these rules.

Standard Decomposition Rules. The standard decomposition rules we use are given
in Fig. 4.6, which allow one to weaken preconditions and strengthen postconditions, and
decompose conjunctions and disjunctions.

Cons

P ′ ⇒ P Q ⇒ Q′

{P} Π {Q}
{P ′} Π {Q′}

Conj

{P1} Π {Q1}
{P2} Π {Q2}

{P1 ∧ P2} Π {Q1 ∧Q2}
Disj

{P1} Π {Q1}
{P2} Π {Q2}

{P1 ∨ P2} Π {Q1 ∨Q2}
Figure 4.6: Standard decomposition rules of Pierogi

Rules for Atomic Statements and View-Based Assertions. Weak and persistent
memory models (e.g. Px86) are inherently non-deterministic. Moreover in contrast to
sequential consistent, in view-based operational semantics (such as Px86view) instructions
such as a := load e may have a side-effect since they may update the view of the thread
performing the load (cf. [39]). Therefore, unlike Hoare Logic, which contains a single rule
for assignment, we have a set of rules for atomic statements, describing their interaction
with view-based assertions. Each of the rules in this section has been proven sound with
respect to the view-based semantics in Isabelle/HOL. Pierogisimp rules for atomic
atomic statements and view-based expressions: A selection of the Pierogisimp
rules for the atomic statements is given in Fig. 4.7, where the statement is assumed to
be executed by thread t. The first column contains the pre/post condition triple, the
second any additional constraints and the third, labels that we use to refer to the rules
in our descriptions below. Unless explicitly mentioned as a constraint, we do not assume
that threads, locations and values are distinct; e.g. rule LP3 (referring to t and t′) holds
regardless of whether t = t′ or not.

The rules in Fig. 4.7 provide high-level insights into the low-level semantics of Px86view
without having to understand the operational details. The LPi rules are for statement
a := loadx. Rule LP1 states that if t’s thread view of x is the set of values S, then in
the post state a is an element of S and moreover t’s thread view of x is a subset of
S (since t’s thread view may have shifted). By LP2, provided the conditional view of
t on y (with condition x = u) is S, if the load returns value u, then the view of t is
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Precondition Statement Postcondition Const. Ref.{
[x]t = S

}
a := loadx

{
a ∈ S ∧ [x]t ⊆ S

}
LP1{

u ∈ [x]t ⇒ ⟨x, u⟩[y]t = S
} {

a = u ⇒ [y]t ⊆ S
}

LP2{
|x, u| = 1 ∧ [x]t′ = {u}

} {
a = u ⇒ [x]t = {u}

}
LP3{

true
}

store x v

{
[x]t = {v}

}
SP1{

[x]t′ = S
} {

[x]t′ = S ∪ {v}
}

t ̸= t′ SP2{
[x]At′ = S

} {
[x]At′ = S ∪ {v}

}
SP3{

[x]P = S
} {

[x]P = S ∪ {v}
}

SP4{
[y]t = S ∧ v /∈ [x]t′

} {
⟨x, v⟩[y]t′ ⊆ S

}
t ̸= t′ SP5{

true
} {

VxWt ∧VxWFt ∧ VxWMt
}

SP6{
|x, v| = n

} {
|x, v| = n+ 1

}
SP7{

true
} {

Vx : vW
}

SP8{
[x]t = S

}
flush x

{
[x]P ⊆ S ∧ [x]At ⊆ S

}
FP1{

[x]P = S
} {

[x]P ⊆ S
}

FP2{
VxWt′ ∧ [x]t′ = {u} ∧ VxWFt

} {
[x]P = {u}

}
FP3{

[x]t = S ∨ [x]At = S
}

flushopt x
{
[x]At ⊆ S

}
OP{

[x]At = S ∨ [x]P = S
}

sfence
{
[x]P ⊆ S

}
SFP{

VxWt′ ∧VxWMt ∧[x]t′ = {u}
}

mfence

{
[x]t = {u}

}
MFP1{

[x]t = S
} {

[x]t ⊆ S
}

MFP2{
[x]At = S ∨ [x]P = S

} {
[x]P ⊆ S

}
MFP3{

[y]t′ = S
}
a :=CAS x e1 e2

{
[y]t′ ⊆ S

}
x ̸= y CP1{

[x]At′ = S
} {

a ⇒ [x]At′ = S ∪ {e2}
}

CP2{
true

} {
a ⇒ e2 ∈ [x]P

}
CP3{

true
} {

(a ⇒ (Vx : e2W∧ [x]t = {e2})
}

CP4{
Vx : vW

} {
Vx : e2W∨Vx : vW

}
CP5{

Vx : vW
} {̸

= a
}

v ̸= e1 CP6

Figure 4.7: Selected proof rules for atomic statements executed by thread t

shifted so that [y]t ⊆ S. We only have [y]t ⊆ S in the postcondition because there may
be multiple writes to x with value u; reading x read may shift the view to the latter
write, thus reducing the set of values that t can read for y. LP3 describes conditions for
a deterministic load by thread t. The precondition assumes that there is only one write
to x with value u, that some thread t′ sees the last write to x with value u. Then, if t
reads u, its thread view of x is also constrained to just the set containing u.

The store rules, SPi, reflect the fact that a new write modifies the views of the other
threads as well as the persistent memory and asynchronous views. The first four rules
describe the interaction of a store by thread t with current view assertions. By SP1,
the store ensures that the current view of t is solely the value v written by t. This
is because, in Px86view, new writes are introduced by the executing thread, t, with a
maximal timestamp (see store rule in Fig. 4.3), and t’s view is updated to this new
write. SP2, SP3 and SP4 are similar, and assuming that the view (of another thread,
persistent memory, and asynchronous view, respectively) in the pre-state is S, shows
that the view in the post-state is S∪{v}. Rule SP5 allows one to introduce a conditional
observation assertion ⟨x, v⟩[y]t′ where t′ ̸= t. The pre-state of SP5 assumes that t’s view
of y is the set S, and that t′ cannot view value v for y. Rule SP6 introduces last-view
assertions for t after t performs a write to x, and finally SP7 states that the number of
writes to x with value v increases by 1 after executing store x v.

Rules FPi describe the effect of flush x on the state. FP1 states that, provided that the
current view of t for x is the set of values S, after executing flush x, we are guaranteed
that both the persistent view and asynchronous view of t for x are subsets of S. We
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obtain a subset in the post state since the Px86view semantics potentially move the
persistent and asynchronous views forward. Similarly, by FP2 if the current persistent
view of x is S, then after executing flush x the persistent view will be a subset of S.
Finally, FP3 provides a mechanism for establishing a deterministic persistent view u for
x. The precondition assumes that some thread’s view of x is the last write with value u
and that t’s view is such that the flush is guaranteed to flush to this last write to x.

Rule OP describes how the asynchronous view of t in the postcondition of flushopt x is
related to the current view of t and the asynchronous view in the precondition. Rule
SFP describes the relationship between the persistent view in the postcondition and the
asynchronous view and the persistent view in the precondition for an sfence instruction.

The mfence rules, MFPi, describe how mfence affects the current views of the currently
executing thread (t). Rule MFP1 is analogous to rule FP3, providing a mechanism for
establishing a deterministic thread view value for x. Rule MFP2 expresses the fact that
after executing an mfence instruction, the thread view of t for any address x is a subset
of what it was in the pre-state. Finally, by rule MFP3, provided that the asynchronous
view of t and the persistent view for x is the set of values S, after executing mfence, we
are guaranteed that the persistent view for x is a subset of S.

Lastly, we demonstrate some selected rules regarding the CAS instruction. In the fol-
lowing, a = true indicates a successful execution of CAS, while a = false indicates a
failed execution of CAS. Rule CP1 states that given that x ̸= y the thread view of some
thread t for x after executing a CAS instruction is a subset or equal the thread view it
had for x in the pre-state. By CP2, assuming that the asynchronous view of some thread
t for x in the pre-state is S, its asynchronous view in the post-state is S ∪ {e2}. Rule
CP3 states that the successful execution of a CAS instruction on x guarantees that the
newly written value on x (e2) by CAS will be present in the persistent view of x. By
rule CP4, if a CAS on x by a thread t succeeds then the last written value on x becomes
the value written by CAS (e2) and the thead view of x for t is updated to contain only
the value e2. Rule CP5, states that after executing a CAS on x either the last written
value on x becomes e2, indicating that the CAS succeeded or it remains the same as in
the pre-state. Finally, by CP6 given that in the pre-state, the last written value on x is
different from the CAS argument e1, the CAS definitely fails, and thus in the post-state
a = false.

In our Isabelle/HOL development, we have also proved the stability of several assertions
(see Fig. 4.8 for a selection). An assertion P is stable over a statement α executed by t
iff {P} α {P} holds.

Pierogifull rules for atomic atomic statements and view-based expressions:
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Statement Stable Assert. Const. Ref.

a := loadx

{
[y]t′ = S

}
t ̸= t′ LS1{

[y]P = S
}

LS2{
[y]At′ = S

}
LS3{

a = k
}

LS4{
VyWt′

}
LS5{

Vy : vW
}

LS6{
VyWM

t′

}
LS7

flush x

{
[y]t′ = S

}
FS1{

[y]P = S
}

x ̸= y FS2{
VyWt′

}
FS3{

VyWF
t′

}
FS4{

|y, v| = n
}

FS5{
Vy : vW

}
FS6

sfence

{
[x]t′ = S

}
SFS1{

|x, v| = n
}

SFS2{
[x]At = S

}
SFS3

mfence
{
VxWt′

}
MFS2{

VxWM
t′

}
t ̸= t′ MFS3{

|x, v| = n
}

MFS4{
[x]At = S

}
MFS5

Statement Stable Assert. Const. Ref.

store x v

{
[y]t′ = S

}
x ̸= y WS1{

[y]P = S
}

x ̸= y WS2{
[y]At′ = S

}
x ̸= y WS3{

a = k
}

WS4{
VyWt′

}
x ̸= y WS5{

VyWF
t′

}
x ̸= y WS6{

|y, v′| = n
}

x ̸= y ∨
v ̸= v′

WS7{
Vy : vW

}
x ̸= y WS8{

VyWM
t′

}
x ̸= y WS9{

VyWF
t′

}
x ̸= y WS10

flushopt x

{
[y]t′ = S

}
OS1{

[y]P = S
}

OS2{
|y, v| = n

}
OS3

a :=CAS x e1 e2

{
v /∈ [y]t′

}
x ̸= y CS1{

Vx : vW
}

v ̸= e1 CS2{
[y]At = S

}
x ̸= y ∨
¬ Vx : e1W

CS3{
[y]P = S

}
x ̸= y ∨
¬ Vx : e1W

CS4{
VyWt′

}
x ̸= y ∨
¬ Vx : e1W

CS5

Figure 4.8: Selection of stable assertions for atomic statements executed by thread t

Precondition Statement Postcondition Const. Ref.{
[x]t = {u}

}
r := loadx

{
r = x⃗

}
LP4{

true
}

store x v

{
LE(x) = |M | − 1

}
SP9{

true
} {

x⃗ = v
}

SP10{
true

} {
LEcoh(x, t, x) = |M | − 1

}
SP11{

true
} {

M [LEcoh(x, t, x)] ≡ ⟨x := v⟩
}

SP12{
true

}
a :=CAS x e1 e2

{
a ⇒ LEcoh(x, t, x) = |M | − 1

}
CP7{

true
} {

a ⇒ x⃗ = e2
}

CP8{
true

} {
a ⇒ [y]t = {y⃗}

}
CP9{

true
} {

a ⇒ M [LEcoh(x, t, y)] ≡ ⟨y := y⃗⟩
}

CP10{
x⃗ = v

} {
x⃗ = v ∨ x⃗ = e2

}
CP11{

true
}

Crash
{
M [0](x) = x⃗

}
C1{

true
} {

[x]P, [x]At , [x]t = {M [0](x)}
}

C2{
[x]P = {v}

} {
x⃗ = v

}
C3

Figure 4.9: Selected proof rules for atomic statements executed by thread t. Note t may
be equal to t′ and x may be equal to y unless explicitly ruled out.

The proof rules shown in Fig. 4.7 and Fig. 4.8, along with, continue to hold in βPx86view.
Fig. 4.9 extends Fig. 4.7 and contains additional rules of atomic statement for view-based
expressions that have been developed in the context of Pierogifull. Rule LP4 states that
if the thread view of t for x contains only one element, then after the execution of a load
instruction to x, the value read is surely the value of the last write at x. This is ensured

101



by the well-formedness condition (see below).

Rules SP9 - SP12 refer to the store instruction. Rule SP9 states that in the post-state the
timestamp of the last message in memory with location x (LE(x)), becomes the index
of the last message in memory (|M|-1). By rule SP10 the last written value at x (x⃗)
becomes equal to v. Since the coherence view of x (coh(x)) becomes equal to |M |−1 the
expressions LE(x) and LEcoh(x, t, x) are equivalent in the post-state. Therefore, as stated
in rule SP11, in the post-state LEcoh(x, t, x) becomes equal to |M | − 1. Furthermore, in
the post-state by rule SP12 the message that corresponds to LEcoh(x, t, x) has location x
and value v.

Rules CP7 - CP11 refer to the CAS instruction. A returned value true (resp. false)
indicates a CAS success (resp. failure) Rules CP7 - CP10 describe the conditions that
hold in case of a CAS success. When a CAS succeeds, it stores at x the value of
e2. Similar to the store instruction postconditions, in the post state LE(x) becomes
equivalent to the LEcoh(x, t, x) expression and equal to |M | − 1 (rule CP7). Moreover,
the last written value on x becomes e2 (rule CP8). Most importantly, (rule CP9), after
a successful execution of CAS, the thread view of all the locations for t is updated to
include only their last written value. By rule CP10 the message that corresponds to
LEcoh(x, t, y), for any location y in the memory, has as location y and as value the last
written value on y (y⃗). Finally, rule CS11 states that in the post-state the last written
value at x either remains the same, indicating a CAS failure, or it changes to e2.

Rules C1 - C3 concern the Crash transition. Rule C1 states that in the post-crash state,
the initial message of the memory maps its location to its last stored value. This is
trivial to show as after a crash, only a single value (namely, the one that persisted prior
to the crash) remains observable for each location in the memory. By rule C2 the current
views for each location x in the post-crash state contain only the value to which they
are mapped in the initial message. Finally, C3 states that if the persistent view of any
location x includes only one value v in the pre-crash state, the last stored value on x (x⃗)
after a crash takes place, will definitely be v.

Fig. 4.10 extends Fig. 4.8 and contains a selection of assertions (middle column) that
are proven stable against the corresponding atomic statements (left column) taking into
account the constraints mentioned in the right. These proof rules are mostly used for
establishing global correctness.
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Statement Stable Assert. Const. Ref.

r := loadx

{
y⃗ = u

}
LS8{

LEcoh(z, t
′, y)

}
t ̸= t′ LS9{

LE(y)
}

LS10

a :=CAS x e1 e2

{
x⃗ = v

}
x⃗ ̸= e1 CS6{

LEcoh(z, t
′, y) = t

}
t ̸= t′ CS7{

LE(y) = t
}

x ̸= y ∨ x⃗ ̸= e1 CS8

sfence
{
x⃗ = v

}
SFS4{

LE(x) = v
}

SFS5

store x v

{
y⃗ = v

}
x ̸= y WS11{

LEcoh(z, t
′, y) = v

}
x ̸= z ∨ t ̸= t′ WS12{

LE(y) = v
}

x ̸= y WS13

flushopt x

{
y⃗ = v

}
OS4{

LEcoh(z, t
′, y) = v

}
OS5{

LE(y) = v
}

OS6

Figure 4.10: Selection of stable assertions for atomic statements executed by thread t.
Note x may be equal to y and t may be equal to t′ unless explicitly ruled out.

Well-formedness. The final major aspect of our framework is a well-formedness con-
dition that describes the set of reachable states in the Px86view semantics. The well-
formedness condition is common for both Pierogisimp and Pierogifull. The condition
is expressed as an invariant of the semantics: it holds initially and is stable under every
possible transition of Px86view. In fact, the rules in Figs. 4.7, 4.8, 4.9 and 4.10 are
proved with respect to this well-formedness condition.

The majority of the well-formedness constraints are straightforward, e.g. describing the
relationship between the views of different components. We provide a brief description
of the constraints below.

The most important component of the well-formedness condition is a non-emptiness
condition on views. Specifically, it is guaranteed that its current view expression of an
address x (∈ Loc) contains at least the last write to x. Formally,

[x]t ⊇ {x⃗} ∧ [x]P ⊇ {x⃗} ∧ [x]At ⊇ {x⃗}

For instance, a consequence of this condition is that, in combination with LP1, we have:{
[y]t = {v}

}
a := loadx

{
[y]t = {v}

}
(4.7)

Furthermore, the well-formedness condition ensures that all the view components of the
thread state (§4.1.2.1) are inside the limits of the memory, i.e. 0 ≤ view < |σ.M |.

Finally, the well-formedness condition provides two important properties regarding the
coherence (coh) view of the thread state. Firstly,

∀x ∈ Loc.t ∈ Tid.MemLoc(x, σ.T(t).coh(x), σ.M) = x

By this, we mean that the location of the memory message that the coherence view for
a location x of a thread t points to is always equal to x.

Secondly,

∀x ∈ Loc.t ∈ Tid.i ∈ TSt(σ, x) ⇒ σ.T(t).coh(x) ≤ i
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The above expresses the fact that the coherence view of x for thread t in state σ is the
lower bound of the set of timestamps that are observable for t to read in x in σ.

4.3 Mechanization

Perhaps the greatest strength of our development is an integrated Isabelle/HOL mecha-
nization provides a fully-fledged semi-automated verification tool for Px86view programs.
This mechanization builds on the existing work on Owicki–Gries for RC11 by Dalvandi
et al. [39] applying it to the Px86view semantics.

The mechanization of Pierogisimp started by encoding the operational semantics of Cho
et al. [32] ( §4.1), followed by the view-based assertions of Pierogisimp described in §4.2.1.
Then, we proved the correctness of all of the proof rules for the atomic statements and
view-based assertions of Pierogisimp, including those described in §4.2.3. These rules
can be challenging to prove since they require unfolding of the assertions and examination
of the low-level operational semantics and their effect on the views of different system
components.

Once proved, the rules provided are highly reusable, and are key to making verification
feasible. In particular, when showing the validity of a proof outlines, Isabelle/HOL is
able to generate the necessary proof obligations (after some minor interactions), then
automatically able to find the set of high-level proof rules needed to discharge each proof
obligation via the built-in sledgehammer tool [25]. This facility enables a high degree
of experimentation and debugging of proof outlines, including the ability to reduce the
complexity of assertions once a proof outline has been validated.

The base development of Pierogisimp (semantics, view-based assertions, and soundness
of proof rules) comprise ∼7000 lines of Isabelle/HOL code and took approximately 2
months.

The mechanization of Pierogifull started by encoding the necessary modifications to
the Px86view model [32] to reflect the revised version (βPx86view) presented in §4.1. We
then adapted the view-based assertions of Pierogisimp to the new setting and added
the last-entry assertions of Pierogifull(§4.2.1). Finally, we adapted a selection of the
Pierogisimp proof rules (§4.2.3) to the new context and proved additional proof rules
for Pierogifull (§4.2.3).

The base development of Pierogifull (semantics, view-based assertions, and soundness
of proof rules) comprises ∼10,000 lines of Isabelle/HOL code and took approximately
2.5 months.

4.4 Related Work

The soundness of Pierogi is proven relative to the Px86view of Cho et al. [32]; there are
however other equivalent models in the literature [2, 90, 122]. While the original persis-
tent x86 semantics have explicit asynchronous persist instructions [122], the underlying
model assumed in this work is the one due to Cho et al. [32], whose persist instructions
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are synchronous. Nevertheless, Khyzha and Lahav [90] formally proved that the two al-
ternatives are equivalent when reasoning about states after crashes (e.g. using our “crash
invariants”).

Another program logic for persistent programs is POG [119], which (as with Pierogi)
is a descendent of Owicki–Gries [115]. Pierogi goes beyond POG by handling examples
that involve flushopt instructions, which cannot be directly verified using POG. Raad et
al. [119] provide a transformation technique to replace certain patterns of flushopt and
sfence with flush. Specifically, given a program Π that includes flushopt instructions,
provided that Π meets certain conditions, this transformation mechanism rewrites Π
into an equivalent program Π′ that uses flush instructions instead of allowing one to
use POG. However, there are three limitations to this strategy: 1) the rewriting is an
external mechanism that requires stepping outside the POG logic; 2) the rewriting is
potentially expensive and must be done for every program that includes flushopt; and
3) the transformation technique is incomplete in that not all programs meet the stipulated
conditions (e.g. Epoch Persistency 2), and thus cannot be verified using this technique.
Pierogi has no such limitations. Moreover, POG has no corresponding mechanization,
and developing a mechanization that also efficiently handles the program transformation
for flushopt instructions would be non-trivial.

Vindum et al. [140] have recently developed a concurrent separation logic for weak persis-
tency called Spirea. This logic is built upon the Perenial [28] and Iris [28] logic framework
and has been mechanized in the Coq proof assistant. Spirea is not architecture-specific.
Instead, it assumes the more generic explicit epoch persistency model, as proposed by
Izraelevitz et al. [81]. The assumed consistency model incorporates release-acquire and
non-atomic consistency modes, closely resembling the release-acquire synchronization
and non-atomic segments of C11. As with Pierogi, the underlying semantics and logic
assertions are expressed in terms of view-based expressions, i.e. thread and persistent
memory views. To reason about the state after a system crash, the logic utilizes Peren-
nial’s crash Hoare triples. Denoted as

{
P
}
e
{
Q
}{

Qc

}
, a crash Hoare triple requires the

crash condition Qc to hold at every step of execution of e. In the scenario where a pro-
gram incorporates a recovery procedure, the logic relies on Perennial’s recovery Hoare
triples for reasoning about the state after recovery. Denoted as

{
P
}
e
{
Q
}{

Qr

}
, a re-

covery Hoare triple states that assuming e terminates with a value v, Q(v) holds if no
crash-recovery event has occurred. Otherwise, Qr(v) must hold.

The Owicki–Gries method was first applied to non-SC memory consistency by Lahav et
al. [97]. One way that their approach, which targets the release/acquire memory model,
is different from ours is that they aim to use standard SC-like assertions; in order to
retain soundness under a weak memory model, they had to strengthen the standard
stability conditions on proof outlines. Dalvandi et al. [39, 43] took a different approach
when designing their Owicki–Gries logic for the release/acquire fragment of C11: by
employing a more expressive, view-based assertion language, they were able to stick with
the standard stability requirement. In our work, we follow Dalvandi et al.’s approach.
However, our assertions are fine-tuned to cope with the other types of view present in
Px86view, such as those corresponding to the persistent and the asynchronous views. It is
interesting that some of the principles of view-based reasoning apply to different memory
models, and future work could look at unifying reasoning across models.

Dalvandi et al. [39] have developed a deeper integration of their view-based logic using
the Owicki–Gries encoding of Nipkow and Prensa Nieto [111] in Isabelle/HOL. Such
an integration would be straightforward for Pierogisimp too, allowing verification to
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take place without translating programs into a transition system. This would be much
more difficult for POG since Owicki–Gries rules themselves are different from the stan-
dard encoding in Isabelle/HOL, in addition to the transformation required for flushopt
instructions discussed above.

The idea of extending Hoare triples with crash conditions first appeared in the work of
Chen et al. [31]. However, that work supports neither concurrency nor explicit flushing
instructions. Related ideas are found in the works of Ntzik et al. [112] and Chajed et
al. [29]. However, in contrast to Pierogisimp, both of these works 1) assume sequen-
tially consistent memory, as opposed to a weak memory model such as TSO; 2) assume
strict persistency (where store and persist orders coincide); and 3) assume there is a
synchronous flush operation, which is easier to reason about than the asynchronous
flushopt operation.

Besides program logics, there have been other recent efforts to help programmers reason
about persistent programs. For instance, Abdulla et al. [2] have proven that state-
reachability for persistent x86 is decidable, thus opening the door to automatic verifica-
tion of persistent programs, and Gorjiara et al. [64] have developed a model checker for
finding bugs in persistent programs.
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Chapter 5

Utilizing Pierogisimp

In this chapter, we demonstrate the use Pierogisimp for verifying several idiomatic
persistent x86 programs. We begin with recapping the Pierogisimp and its reasoning
principles (§5.1). We then verify a selection of programs using Pierogisimp in §5.2 and
discuss their Isabelle/HOL mechanization (§5.3). The Isabelle/HOL mechanization of
the examples can be found at
https://doi.org/10.6084/m9.figshare.18469103.v2.

5.1 Reasoning principles of Pierogisimp

This section constitutes an informal discussion of the reasoning principles of Pierogisimp.
We aim to provide insight into the process of developing proof outlines and establishing
their validity as outlined in Def. 4.2.1. We do this by analyzing in high level a series of
running examples.

In this section and the remainder of this chapter, we assume the registers of distinct
threads have distinct names. The precondition P in Fig. 5.1 states that both threads
may initially only read 0 for both x and y: ∀t∈{1, 2}. [x]t=[y]t={0}

Sequential Reasoning about Consistency using Views. In Fig. 5.1 we present a
Pierogisimp proof sketch of mp. Recall that in order to account for possible write-read
reorderings on Intel-x86 architectures, Px86view associates each thread t with a coherence
view, describing the writes visible to t. To reason about such thread-observable views,
recall that Pierogisimp supports assertions of the form [x]t = S, stating that t may read
any value in the set S for location x. That is, the thread view of t for x (see §4.2.1) consists
of the writes whose values are those in S. We will now discuss the Local Correctness proof
of Fig. 5.1 (see Def. 4.2.1).

In the case of thread 1, we can weaken P (using the standard rule of consequence of
Hoare logic – see Cons in §4.2.3) to obtain P1. Upon executing store x 42 (1) we weaken
the resulting assertion by dropping the a = 0 conjunct; and (2) we update the observable
view of thread 1 on x to reflect the new value of x: [x]1 = {42}; that is, after executing
store x 42, the only value observable by thread 1 for x is 42. Similarly, after executing
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P :
{
a = b = 0 ∧ ∀t ∈ {1, 2}. [x]t = [y]t = {0}

}
P1 :

{
7 /∈ [y]2 ∧ a = 0

}
store x 42; //SP1,Cons

P2 :
{
[x]1 = {42} ∧ 7 /∈ [y]2

}
store y 7; //SP1,Cons

P3 :
{
true

}

Q1 :
{
[y]2 ⊆ {0, 7} ∧ (7 ∈ [y]2 ⇒ ⟨y, 7⟩[x]2 = {42})

}
a := load y; // LP2

Q2 :
{
a ∈ {0, 7} ∧ (a = 7 ⇒ [x]2 = {42})

}
b := loadx; // LP1,Cons

Q3 :
{
a = 7 ⇒ b = 42

}
Q :

{
a = 7 ⇒ b = 42

}
Figure 5.1: A Pierogisimp proof sketch of message passing (mp), where the //annotation
at each step identifies the Pierogisimp proof rule (in §4.2.3) applied, and the highlighted
assertions capture the effects of the preceding instruction.

store y 7, we could assert [y]1 = {7}; however, this is not necessary for establishing the
final postcondition Q, and we thus simply weaken the postcondition to true (P3).

Analogously, in the case of thread 2 we weaken P to obtain Q1: [y]2 = {0} implies
[y]2 ⊆ {0, 7} and 7 ∈ [y]2 ⇒ ⟨y, 7⟩[x]2 = {42}. Note that 7 ∈ [y]2 ⇒ ⟨y, 7⟩[x]2 = {42}
yields a vacuously true implication as [y]2 = {0} and thus 7 ̸∈ [y]2. The ⟨y, 7⟩[x]2
constitutes a conditional view assertion [39](see §4.2.1), capturing the essence of message
passing by stating how reading a value on one location (y) affects the thread-observable
view on a different location (x). More concretely, ⟨y, 7⟩[x]2= {42} states that if thread
2 executes a load on y and reads value 7, it subsequently may only observe value 42
for x. This is indeed the essence of message passing in mp: once thread 2 reads 7 from
y, it may only read 42 for x thereafter. As such, after executing the read instruction
a := load y (1) we apply the LP1 rule (in Fig. 4.7) which simply replaces [y]2 with the
local register a in which the value of y is read; and (2) we replace the conditional assertion
⟨y, 7⟩[x]2 = {42} with the implication a = 7 ⇒ [x]2 = {42}, stating that if the value
read by thread 2 for y (in a) is 7, then its observable view for x is {42}. Similarly, upon
executing b := loadx we simply apply LP1 to replace [x]2 with the local register b in which
the value of x is read. Lastly, the final postcondition Q is given by the conjunction of
the thread-local postconditions (P3 ∧Q3).

Concurrent Reasoning and Stability. In our description of the Pierogisimp proof
sketch in Fig. 5.1 thus far we focused on sequential (per-thread) reasoning, ignoring how
concurrent threads may affect the validity of assertions at each program point. Specifi-
cally, as in existing concurrent logics [97, 115, 119], we must ensure that the assertions
at each program point are stable under concurrent operations. This corresponds to the
Stability requirement of the valid proof outline (see Def. 4.2.1).

For instance, to ensure that P1 remains stable under the concurrent operation a := load y,
we require that executing a := load y on states satisfying the conjunction of P1 and the
precondition of a := load y (i.e. Q1) not invalidate P1, in that the resulting states continue
to satisfy P1; that is,

{
P1 ∧Q1

}
a := load y

{
P1

}
holds. Similarly, we must ensure that P1

is stable under b := loadx, i.e.
{
P1 ∧Q2

}
b := loadx

{
P1

}
holds. Analogously, we must

establish the stability of P2, P3, Q1, Q2 and Q3 under concurrent operations. In §4.2.3
we present syntactic rules that simplify the task of checking stability obligations. It is
then straightforward to show that the assertions in Fig. 5.1 are stable.

Reasoning about flush Persistency. To reason about the relaxed, buffered persis-
tency of Px86view, Cho et al. [32] introduce persistency views, determining the possible
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{
[y]P = {0}

}
store x 1; //SP1{

[x]1 = {1} ∧ [y]P = {0}
}

flush x; //FP1{
[x]1 = {1} ∧ [x]P = {1} ∧ [y]P = {0}

}
store y 1; //SP1{

[x]1 = {1} ∧ [x]P = {1} ∧ [y]1 = {1}
}{{

 : [y]P = {1} ⇒ [x]P = {1}
}}

{
[y]P = {0}

}
store x 1; //SP1{

[x]1 = {1} ∧ [y]P = {0}
}

flushopt x; //OP1{
[x]1={1} ∧ [x]A1={1} ∧ [y]P={0}

}
sfence; //SFP1{

[x]1={1} ∧ [x]P={1} ∧ [y]P={0}
}

store y 1; //SP1{
[x]1={1} ∧ [x]P={1} ∧ [y]1={1}

}{{
 : [y]P = {1} ⇒ [x]P = {1}

}}
Figure 5.2: Proof sketches of Fig. 2.7b (left) and Fig. 2.7d (right)

persisted values for each location; i.e. the values of those writes that may have persisted
to memory. Note that the persistency view determines the possible values observable
upon recovery from a crash. By contrast, the (per-thread) thread views determine the
observable values during normal (non-crashing) executions, and have no bearing on the
post-crash values.

Analogously, Pierogisimp supports assertions of the form [x]P = S, stating that the
persistent view for x (see §4.2.1) includes writes whose values are given by S. To see this,
consider the Pierogisimp proof sketch of Fig. 2.7b in Fig. 5.2 (left). Initially, y holds 0 in
persistent memory: [y]P = {0}. (Note that the precondition could additionally include
[x]1 = [y]1 = {0} ∧ [x]P = {0} to denote that initially the thread may only observe 0 for
x and y and that x holds 0 in persistent memory; however, this is not needed for the
proof and we thus forgo it.)

As before, after executing store x 1, the observable value for x is updated, as denoted
by [x]1 = {1}. Moreover, after executing flush x, the persisted value for x, as denoted
by [x]P = {1}, by committing (persisting) the observable value for x ([x]1 = {1}) to
memory (see FP1 in Fig. 4.7). Finally, after executing store y 1, the observable value
for y is updated, as denoted by [y]1 = {1}.

Crash Invariants. Recall that  : y=1 ⇒ x=1 in Fig. 2.7b denotes a crash invariant
in that it describes the persistent memory upon recovery from a crash at any program
point. This is because we have no control over when a crash may occur. To capture
such invariants, in Pierogisimp we write quadruples of the form

{
P
}
C
{
Q
}{{

 : I
}}

,
where

{
P
}
C
{
Q
}

denotes a Hoare triple and I denotes the crash invariant. If C is a
sequential program, I must follow from every assertion (including P and Q) in the proof.
For instance, in the proof outline of Fig. 5.2 (left) all four assertions imply the invariant
[y]P = {1} ⇒ [x]P = {1}. The above corresponds to the Persistence requirement of
the valid proof outline (see Def. 4.2.1). We discuss the meaning of crash invariants for
concurrent programs below.

Reasoning about flushopt Persistency. Recall that unlike flush, flushopt instructions
(due to instruction reordering) may behave asynchronously and their effects may not take
place immediately after execution. As such, unlike for flush x, after executing flushopt x
we cannot simply copy the observable view on x to the persistent view on x.
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P :
{
a = 0 ∧ ∀o ∈ {x, y, z}, t ∈ {1, 2}. [o]t = [o]P = {0}

}
P1 :

{
[y]2 = {0} ∧ [z]P = {0} ∧ a = 0

}
store x 1; //SP1

P2 :
{
[y]2 = {0} ∧ [z]P = {0} ∧ a = 0 ∧ [x]1 = {1}

}
flush x; //FP1,Cons

P3 :
{
[x]P = {1}

}
store y 1; //SP1,Cons

P4 :
{
[x]P = {1}

}

{
true

}
a := load y;{

true
}
if (a = 1){

a = 1
}

store z 1;{
true

}
Q :

{
[x]P = {1}

}
I :
{{
 : [z]P = {1} ⇒ [x]P = {1}

}}
Figure 5.3: A Pierogisimp proof sketch of Fig. 2.7e

To capture the asynchronous nature of flushopt, Cho et al. [32] introduce yet another set
of views, namely the thread-local asynchronous view : the asynchronous view of thread t
on x describes the values (writes) that will be persisted at a later time (asynchronously)
by t upon executing a barrier instruction. That is, 1) when thread t executes flushopt x,
its asynchronous view of x is advanced to at least its observable view of x; and 2) when t
executes a barrier (sfence, mfence or RMW), then its persistent view for each location is
advanced to at least its corresponding asynchronous view. We model this in Pierogisimp
by 1) setting [x]At to be a subset of [x]t when flushopt x is executed (see OP in Fig. 4.7);
and 2) setting [x]P to be a subset of [x]At (for each location x) when a barrier is executed
(see SFP in Fig. 4.7).

This is illustrated in the proof sketch of Fig. 2.7d in Fig. 5.2 (right). In particular, unlike
the proof sketch of Fig. 2.7b in Fig. 5.2 (left), after executing flushopt x we cannot
simply copy the thread-observable view to the persistent view. Rather, we copy the
thread-observable view [x]1 to its asynchronous view and assert [x]A1 = {1}; and upon
executing the subsequent sfence, we copy the thread-asynchronous view to the persistent
view and assert [x]P = {1}.

Putting It All Together We next present a Pierogisimp proof sketch of Fig. 2.7e in
Fig. 5.3.

The program in Fig. 5.3, assuming that the left thread has id 1, is given as follows
(see §4.1.1). The formalization of the right thread is omitted but is similar.

Π ≜

{
(1, ι) 7→ store x 1 goto 2, (1, 2) 7→ flush x goto 3,
(1, 3) 7→ store y 1 goto ζ, ...

}
The annotation of the proof in Fig. 5.3 is given by ann, with the mappings of thread 1
as shown below; the mappings of thread 2 are similar.

ann ≜
{
(1, ι) 7→ P1, (1, 2) 7→ P2, (1, 3) 7→ P3, (1, ζ) 7→ P4, . . .

}
Additionally, we have in ≜ a = 0 ∧ ∀o ∈ {x, y, z}, t ∈ {1, 2}. [o]t = [o]P = {0}, fin ≜
[x]P = {1} and I ≜ [z]P = {1} ⇒ [x]P = {1} (see the definition of proof outline in §4.2.2)

We now demonstrate that proof outline Fig. 5.3 is valid according to Def. 4.2.1. Both
Initialisation and Finalisation clearly hold. Moreover, Persistence holds for thread 1. Note
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that the crash invariant I follows from the assertions at each program point of thread 1
(i.e. P1 ∨P2 ∨P3 ∨P4 ⇒ I). That is, the crash invariant must follow from the assertions
at all program points of some thread (e.g. thread 1 in Fig. 5.3). In the case of sequential
programs (e.g. in Fig. 5.2), this amounts to all program points (of the only executing
thread). Intuitively, we must ensure that the crash invariant holds at every program
point regardless of how the underlying state changes. As the assertions are stable under
concurrent operations, it is thus sufficient to ensure that there exists some thread whose
assertions at each program point imply the crash invariant.

For Local correctness of thread 1, we must prove (5.1)–(5.3) below; Local correctness of
thread 2 is similar. {

P1

}
store x 1

{
P2

}
(5.1){

P2

}
flush x

{
P3

}
(5.2){

P3

}
store y 1

{
P4

}
(5.3)

The proof of the left thread is analogous to that in Fig. 5.2 (left); the proof of the
right thread is straightforward and applies standard reasoning principles. The final
postcondition Q is obtained by weakening the conjunction of per-thread postconditions.

For Stability of P (the precondition of store x 1 in thread 1) against thread 2 we must
prove: {

P1

}
a := load y

{
P1

}
(5.4){

P1 ∧ a = 1
}

store z 1
{
P1

}
(5.5)

Stability of other assertions (i.e., P2–P4) is similar. We prove (5.1)–(5.5) in §4.2.3.

5.2 Examples ( )

In this section, we present a selection of programs that we have verified in Isabelle/HOL.
These examples highlight specific aspects of Px86, in particular, the interaction between
flushopt and sfence, as well as aspects of our view-based assertion language that sim-
plifies verification.

5.2.1 Optimised Message Passing

We start by considering a variant of Fig. 2.7e (example in Fig. 5.4), which contains two
optimizations. First, we notice that the flushing of the write to x in thread 1 can be
moved to thread 2 since the write to z is guarded by whether or not thread 2 reads
the flag y. Second, it is possible to replace the flush with a more optimized flushopt
followed by an sfence. We confirm the correctness of these optimizations via the proof
outline in Fig. 5.4. The optimized message passing in Fig. 5.4 ensures the same persistent
invariant as Fig. 2.7e. However, the way in which this is established differs. In particular,
in Fig. 2.7e, the persistent invariant holds due to thread 1, whereas in Fig. 5.4 it holds
due to thread 2.

With respect to the persistent invariant, the most important sequence of steps takes
place in thread 2 if it reads 1 for y. Note that by the conditional view assertion in
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{
∀o ∈ {x, y, z}, t ∈ {1, 2}. [o]t = [o]P = [o]At = {0}

}
{
[y]2 = {0}

}
store x 1;{

[y]2 = {0} ∧
[x]1 = {1}

}
store y 1;{
true

}

{
(1 ∈ [y]2 ⇒ ⟨y, 1⟩[x]2 = {1}) ∧ [y]2 ⊆ {0, 1} ∧ [z]P = {0}

}
a := load y;{
(a = 1 ⇒ [x]2 = {1}) ∧ [z]P = {0}

}
if (a ̸= 0){

[x]2 = {1} ∧ [z]P = {0}
}

flushopt x;{
[x]A2 = {1} ∧ [z]P = {0}

}
sfence;{
[x]P = {1}

}
store z 1;{

[z]P = {0} ∨ [x]P = {1}
}{

[z]P = {0} ∨ [x]P = {1}
}{{

 : [z]P = {1} ⇒ [x]P = {1}
}}

Figure 5.4: Proof outline for optimised message passing{
∀o ∈ {x, y}, t ∈ {1, 2}. [o]t = {0}

}
(â, b̂ = 0 ∧ [y]1 ⊆ {0, 1}(

â, b̂ = 0, 1 ∧ [y]2 = {1}∧
VyW2)

) 
⟨store x 1, â := b̂+ 1⟩;
(

â = 1 ∧ b̂ ∈ {0, 2}∧
[y]1 ⊆ {0, 1}

)
∨(

â, b̂ = 2, 1 ∧ VyW2 ∧
[y]2 = {1} ∧ VyWM1

)


mfence;
(

â = 1 ∧ b̂ ∈ {0, 2} ∧
[y]1 ⊆ {0, 1})

)
∨

(â, b̂ = 2, 1 ∧ [y]1 = {1})


r1 := load y;
(

â = 1 ∧ b̂ ∈ {0, 2} ∧
(r1 ∈ {0, 1})

)
∨

(â, b̂ = 2, 1 ∧ r1 = 1)




(b̂, â = 0 ∧ [x]2 ⊆ {0, 1}(

b̂, â = 0, 1 ∧ [x]1 = {1}∧
VxW1)

) 
⟨store y 1, â := b̂+ 1⟩;
(

b̂ = 1 ∧ â ∈ {0, 2}∧
[x]2 ⊆ {0, 1}

)
∨(

â, b̂ = 2, 1 ∧ VxW1 ∧
[x]1 = {1} ∧ VxWM2

)


mfence;
(

b̂ = 1 ∧ â ∈ {0, 2} ∧
[x]2 ⊆ {0, 1})

)
∨

(b̂, â = 2, 1 ∧ [x]2 = {1})


r2 := loadx;
(

b̂ = 1 ∧ â ∈ {0, 2} ∧
(r2 ∈ {0, 1})

)
∨

(b̂, â = 2, 1 ∧ r2 = 1)

{
(r1 = 1 ∨ r2 = 1)

}
Figure 5.5: Proof outline for store buffering

the precondition of a := load y, thread 2 is guaranteed to read 2 for x after reading 1
for y. Thus, if the test of if statement succeeds, then thread 2 must see 1 for x. This
view is translated into an asynchronous view after the flushopt is executed, and then
to the persistent view after executing sfence. Until this occurs, we can guarantee that
[z]P = {0}, which trivially guarantees the persistent invariant.

5.2.2 Store, Flush and Optimised Flush Buffering

Initially, we illustrate a typical example of store buffering (sb). Subsequently, we provide
two examples that resemble store buffering but involve persist instructions.
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Store Buffering. Fig. 5.5 illustrates an example of store buffering. In this scenario, we
are not concerned with the content of persistent memory during program execution. Since
no explicit persist instructions are issued, we can infer that [x]P ⊆ 0, 1 and [y]P ⊆ 0, 1.
Therefore, we skip the persistence part of the valid proof outline (Def. 4.2.1) and apply
the standard Owicki–Gries method.

At the end of the program execution depicted in Fig. 5.5, we should observe that either
r1 = 1 or r2 = 1. The read values of addresses x and y depend on the order in which
the store instructions on x and y are executed. This is because stores are ordered with
respect to subsequent mfence instructions of the same thread (see Fig. 2.8). According
to Cho et al.’s semantics, after a thread t executes an mfence instruction, t’s vrNew view
is updated to a timestamp greater than or equal to the thread’s maxcoh view.

To facilitate reasoning about the stores’ order, we use auxiliary variables â and b̂. These
auxiliary variables record the order in which the writes to x and y occur; â = 1 iff the
write to x occurs before the write to y, and â = 2 iff the write to x occurs after the write
to y. The reasoning for thread 1 and thread 2 are symmetric. There are two disjuncts
for each precondition to consider: one consists of assertions that hold when store x 1 is
executed before store y 1, and the other consists of assertions that hold when store y 1
is executed before store x 1.

Here, it is important to note that 1) the maxcoh view represents the timestamp of the
last message added by t to the memory; 2) the vrNew view contributes in determining
the thread view of x for t, indicating the visible values to be read by t in the case of
subsequent external reads (see the load-external rule in Fig. 4.3).

If thread 1 executes store x 1 first, the maxcoh view of thread 1 becomes 1. The sub-
sequent mfence instruction updates the vrNew view of thread 1 to 1. At this point, the
thread view of y for thread 1 contains either only the value 0 (if thread 2 has not executed
store y 1 by then) or both the values 0 and 1 (in the opposite case). The subsequent
read of y returns either 0 or 1.

We will now analyze the case where thread 1 executes store x 1 second. In this case.
the maxcoh view of thread 1 becomes 2. After the execution of store x 1 three facts
can be stated 1) the thread view of thread 2 for y contains only 1 ([y]2 = {1}); 2) 1 is
the last write on y (VyW2); and 3) the timestamp of the last write of y which is 1 is less
than the maxcoh view of thread 1, which is 2. After executing the mfence instruction,
it is determined that the view of thread 1 for variable y will contain only the value 1
([y]1 = 1).This is expressed by rule MFP1. In particular, the mfence instruction causes
the vrNew view of thread 1 to be updated to the value of the maxcoh view at that point,
which is 2. Since the timestamp of the last write to variable x does not exceed the
maxcoh view of thread 1, it is determined that thread 2’s view for address x will only
contain the last write to y, which is 1. This is due to the fact that any other writes to x
are overwritten by the last write to x from the vrNew view perspective.

Flush Buffering. Our next example is a variation of store buffering (sb) and is used
to highlight how writes by different threads on different locations interact with flushes.
Here, thread 1 writes to x and flushes y, while thread 2 writes to y then flushes x.1 This
example exhibits similarities to store buffering because the values that are potentially
flushed to persistent memory by flush x and flush y depend on the order of execution

1Note that the flush operations here are analogous to the load instructions in sb.
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{
∀o ∈ {w, x, y, z}, t ∈ {1, 2}. [o]t = [o]P = {0}

}
(â, b̂ = 0, 0 ∧ [z]P = {0}) ∨(

â, b̂ = 0, 1 ∧ VyW2 ∧
[y]2 = {1} ∧ [w]P = {0}

) 
⟨store x 1, â := b̂+ 1⟩;
(

â = 1 ∧ b̂ ∈ {0, 2}∧
([z]P = {0} ∨ [x]P = {1}

)
∨(

â, b̂ = 2, 1 ∧ VyW2 ∧
[y]2 = {1} ∧ VyWF1 ∧[w]P = {0}

)


flush y;
(

â = 1 ∧ b̂ ∈ {0, 2} ∧
([z]P = {0} ∨ [x]P = {1}))

)
∨

(â, b̂ = 2, 1 ∧ [y]P = {1})


store w 1;
(

â = 1 ∧ b̂ ∈ {0, 2} ∧
([z]P = {0} ∨ [x]P = {1})

)
∨

(â, b̂ = 2, 1 ∧ [y]P = {1})




(â, b̂ = 0, 0 ∧ [w]P = {0}) ∨(

â, b̂ = 1, 0 ∧ VxW1 ∧
[x]1 = {1} ∧ [z]P = {0}

) 
⟨store y 1, b̂ := â+ 1⟩;
(

b̂ = 1 ∧ â ∈ {0, 2} ∧
([w]P = {0} ∨ [y]P = {1})

)
∨(

â, b̂ = 1, 2 ∧ VxW1 ∧
[x]1 = {1} ∧ VxWF2 ∧[z]P = {0}

)


flush x;
(

b̂ = 1 ∧ â ∈ {0, 2} ∧
([w]P = {0} ∨ [y]P = {1})

)
∨

(â, b̂ = 1, 2 ∧ [x]P = {1})


store z 1;
(

b̂ = 1 ∧ â ∈ {0, 2} ∧
([w]P = {0} ∨ [y]P = {1})

)
∨

(â, b̂ = 1, 2 ∧ [x]P = {1})

{
(â, b̂ = 1, 2 ∧ [x]P = {1}) ∨ (â, b̂ = 2, 1 ∧ [y]P = {1})

}{{
 : [w]P = {1} ∧ [z]P = {1} ⇒ [x]P = {1} ∨ [y]P = {1}

}}
Figure 5.6: Proof outline for flush buffering

of the preceding store instructions.The writes to w and z are used to witness whether
the flushes in both threads have occurred. The persistent invariant states that, if both
w and z hold 1 in persistent memory, then either x or y has the new value (i.e. 1) in
persistent memory. If both threads perform their flush operations, then at least one
must flush value 1 since a flush cannot be reordered with a store (see Fig. 2.8).

Although simple to state, the proof is non-trivial since it requires careful analysis of the
order in which the stores to x and y occur. In the semantics of Cho et al. [32], the flush
corresponding to the second store instruction executed synchronises with writes to all
locations. Thus, for example, if thread 1’s store to x is executed after thread 2’s store to
y, then the subsequent flush in thread 1 is guaranteed to flush the new write to y.

The above intuition, as with the store buffering example, requires reasoning about the
order in which operations occur. To facilitate this, we use auxiliary variables â and b̂ to
record the order in which the writes to x and y occur; â = 1 iff the write to x occurs
before the write to y, and â = 2 iff the write to x occurs after the write to y. W.l.o.g.,
let us now consider the precondition of flush y (the reasoning for flush x is symmetric).
In all post conditions there are two disjuncts to consider.

• The first disjunct describes the case in which thread 1 executes its store before
thread 2. In this case the maxcoh of thread 1 is 1 and the maxcoh view of thread
2 is 2. After the execution of the subsequent flush y instruction by thread 1 the
vpCommit view of y is equal to 1. Since the vpCommit view of y dictates the [y]P

view, there is a danger that the thread 1 can terminate having flushed 0 for y.
However, from this state, thread 2 is guaranteed to flush 1 for x before setting z to
1, satisfying the persistent invariant, as described by the second disjunct of each
assertion in thread 2.

• The second disjunct describes the case in which thread 1 executes its store after
thread 2. In this case, the maxcoh of thread 1 is 2 and the maxcoh view of thread 2
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is 1. Since the last write on y has a timestamp less than the maxcoh view after the
execution of the store x 1 instruction, it guaranteed that when the flush y takes
place the persistent view of y ([y]P) will only contain the value of the last write
of y. This is because any other relevant timestamp will be overwritten by the last
write of y. In particular after executing store x 1 thread 1 is guaranteed to flush
1 for y, and this fact is captured by the conjunct VyW2 ∧[y]2 = {1} ∧ VyWF1 , which
ensures that 1) thread 2 sees the last write to y; 2) the only value visible for y to
thread 2 is 1; and 3) a flush performed by thread 1 is guaranteed to flush the last
write to y. Note that by 1) and 2), we are guaranteed that the last write to y has
value 1. We use these three facts to deduce that [y]P = {1} in the second disjunct
of the postcondition of flush y using rule FP3.

Optimised Flush Buffering. Our next example demonstrates how writes by different
threads on different locations interact with optimized flushes. In contrast to the flush
instruction, flushopt is not ordered with respect to store instructions on different ad-
dresses. The example of Fig 5.7, is a variation of the flush buffering example that uses
the optimised flush and sfence instructions instead of the flush instruction. As before,
the writes to w and z are used to witness whether the optimized flushes followed by
persist barriers in both threads have occurred. Intuitively, the order in which thread 1
executes store x 1 and thread 2 executes store y 1 does not impose any constraints on
the order in which the effects of the subsequently issued optimized flushes take place.
This is because the effect of the store instructions can take place in a later point from
the execution of the optimized flush instructions if they do not concern the same address
(see Fig. 2.8).

Let’s consider the proof outline of thread 1. In the initial state all views contains only
the value zero, thus the assertion [w]P = {0} ∧ [y]1 ⊆ {0, 1} holds. After executing
store x 1 by rules WS1 and WS2 (see Fig. 4.8) both [w]P and [y]1 remain unchanged.
By rule OP (see Fig. 4.7) after the execution of the flushopt y instruction we can obtain
that the asynchronous view of y for thread 1 becomes equal or a subset of its thread
view ([y]A1 ⊆ {0, 1}). Furthermore, by rule OS2, [w]P remains the same. The sfence
instruction causes [y]P to become a subset or equal to [y]A1 (rule SFP). Finally, by WS2
after executing the store w 1 instruction [y]P remains unchanged. The proof outline of
thread 2 is symmetrical. It is trivial to show that the crash invariant holds.{

∀o ∈ {w, x, y, z}, t ∈ {1, 2}. [o]t = [o]P = [o]At = {0}
}{

[w]P = {0} ∧ [y]1 ⊆ {0, 1}
}

store x 1;{
[w]P = {0} ∧ [y]1 ⊆ {0, 1}

}
flushopt y;{
[w]P = {0} ∧ [y]A1 ⊆ {0, 1}

}
sfence;{
[y]P ⊆ {0, 1}

}
store w 1;{
[y]P ⊆ {0, 1}

}

{
[z]P = {0} ∧ [x]2 ⊆ {0, 1}

}
store y 1;{
[z]P = {0} ∧ [x]2 ⊆ {0, 1}

}
flushopt x;{
[z]P = {0} ∧ [x]A2 ⊆ {0, 1}

}
sfence;{
[x]P ⊆ {0, 1}

}
store z 1;{
[x]P ⊆ {0, 1}

}{{
 : [w]P = {1} ∧ [z]P = {1} ⇒ [x]P ⊆ {0, 1} ∨ [y]P ⊆ {0, 1}

}}
Figure 5.7: Proof outline for a flush buffering variation with optimised flush and sfence
instructions
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5.2.3 Epoch Persistency

In the following two examples, we observe a pattern of epoch persistency. Through these
examples, we illustrate how the sequence of optimized flushes and loads can influence
the persistency behavior. The only distinction between the two programs showcased
in Figs.5.8 and 5.9 lies in the order of operations performed by thread 2. In the case
of Fig, 5.8, thread 2 executes first a load operation on x (a := loadx), followed by an
optimized flush to x (flushopt x). Conversely, in the case of Figure 5.9, thread 2 executes
an optimized flush to x (flushopt x) first and then proceeds with a load operation on x
(a := loadx). In both programs, the write to y is used for witnessing if the if statement of
thread 2 succeeds. Additionally, the write operation on variable z acts as a mechanism to
ascertain the successful execution of the preceding statements within the program before
any crash event occurs. As we analyze in the remaining of the section, due to the fact
that the load introduction is ordered with respect to subsequent flushopt instructions,
program 5.8 provides a stronger guarantee regarding the values that can be observed to
persistent memory during its execution.

Epoch Persistency 1. The crash invariant of Fig. 5.8 states that if z and y hold the
value 1 in persistent memory then x has the value 2 in persistent memory. In order for
thread 2 to read value 2 for x, the store of 2 at x must be performed before the store
of 1 at x. In this case [x]2 = {1, 2}. Otherwise, if the last store of x is 1 then [x]2 = {1}
and thus the subsequent if statement will fail. Unlike the previous example, establishing
the persistent invariant for thread 2 requires reasoning about the view of thread 2 for
address x (i.e. [x]2) after the execution of the instruction a := loadx. Notice here that
a := loadx is ordered with respect to the later flushopt x instruction. Consequently, any
impact of the execution of the load on thread view of x for thread 2 ([x]2), will also
affect the asynchronous view of x for thread 2 ([x]A2 ). Taking into account the ordering
of the writes at the address x, we can conclude that if thread 2 reads the value 2, it
reads the value of the last write at x. By rule LP3, if a thread t’s view of an address x
contains only the last write at this address, and the last value written at this address
appears only once at the memory, then if a thread t read this value at x, its view of x
(i.e. [x]t) is guaranteed to contain only the last written value at x. Consequently, after
reading value 2, thread 2’s view of x contains only the value 2 (i.e. [x]2 = {2}). The
execution of flushopt x ensures [x]A2 (by rule OP). The OP rule holds because of the
way the flushopt transition alters the vpAsync view. Specifically, if a := loadx returns
2 then, the vpReady view of thread 2 is updated to the timestamp of the last write at
x (2). The following flushopt instruction sets the vpAsync view of x for thread 2 to a
timestamp greater or equal to vpReady. Subsequently, the asynchronous view of x ([x]A2 ),
after the execution of the flushopt instructions contains only the values of messages that
correspond to timestamps that are not overwritten by any other timestamp from the
vpAsync’s view perspective. In this case, the only such timestamp is 2.

To conclude, in the case that the if statement succeeds (i.e. vpReady is 2 in the post state
of the a := loadx instruction), after the execution of the sfence it is guaranteed (by rule
SFP) that the value of x in persistent memory is 2 (i.e. [x]P = {2}). In the case that the
if statement fails, [y]P = {0} must hold, thus the crash invariant holds trivially.

Epoch Persistency 2. We now consider a second epoch persistency example in Fig. 5.9.
The crash invariant of Fig. 5.9 states that if z and y hold the value 1 in persistent memory
then x has either the value 1 or 2 in the persistent memory. The first store of thread 2,
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{
(∀t ∈ {1, 2}, o ∈ {x, y, z}.[o]t = [o]P = {0}) ∧ a = 0

}


|x, 2| = 0 ∧(

([x]2 = 0 ∧ [x]1 = 0)∨
([x]2 = 1 ∧ [x]1 = {0, 1})

) 
store x 2;

|x, 2| = 1 ∧ (
[x]1 = {2} ∧
[x]2 ⊆ {1, 2}

)
∨

[x]2 ⊆ {0, 1, 2}




{
[y]P = {0} ∧ [z]P = {0} ∧ (|x, 2| ∈ {0, 1})

}
store x 1;
(
[x]2 = 1 ∨

(
[x]2 = {1, 2} ∧ |x, 2| = 1
∧[x]1 = 2

))
∧

[y]P = {0} ∧ [z]P = {0}


a := loadx;{
(a = 2 ⇒ [x]2 = {2}) ∧ [y]P = {0} ∧ [z]P = {0}

}
flushopt x;{
(a = 2 ⇒ [x]A2 = {2}) ∧ [y]P = {0} ∧ [z]P = {0}

}
if (a = 2){

[x]A2 = {2} ∧ [y]P = {0} ∧ [z]P = {0}
}

store y 1;{
([x]A2 = {2} ∨ [y]P = {0}) ∧ [z]P = {0}

}
sfence;{
[x]P = {2} ∨ [y]P = {0}

}
store z 1;{
[x]P = {2} ∨ [y]P = {0} ∨ [z]P = {0}

}{
[x]P = {2} ∨ [y]P = {0} ∨ [z]P = {0}

}{{
 : [y]P = {1} ∧ [z]P = {1} ⇒ [x]P = {2}

}}
Figure 5.8: Proof outline for first example of epoch persistency

and the flushopt that follows, are performed at the same address and, therefore cannot
be reordered. Reading the value 2 at x implies that the store of value 2 at x is performed
before the store of value 1 at x. Otherwise, thread 2 would only have the option to read
the value 1 at x. Given that the load instruction, which determines the order of the
stores on variable x, occurs later in the execution, after store x 1 we can only infer that
[x]2 ⊆ {1, 2}. After the flushopt is executed, [x]2 is translated into an asynchronous view
(by rule OP). The subsequent load instruction does not affect the asynchronous view
of x for thread 2 since the load-external and load-internal transition does not
modify the vpAsync view of x, which determines the asynchronous view set. The execution
of sfence translates the asynchronous view [x]A2 ⊆ {1, 2} to the corresponding persistent
view [x]P ⊆ {1, 2} (by rule SFP). In case that the if statement fails, we are certain that
[y]P = {0}, thus the crash invariant holds trivially.

5.2.4 CAS-Based Locking

Let us consider now the program of Fig. 5.10. In this example, we use CAS as a lock in
order to control accesses on x. The crash invariant here, states that if z holds the value 1
in persistent memory then x and y should also obtain the value 1 in persistent memory.
In this example, the invariant is established by thread 2.

In order for the invariant to hold, we must ensure that the flush instructions of thread 1,
are executed before thread 2 executes store z 1. The CAS instructions at the beginning
of the two threads program ensure that the threads are not executing in parallel. In
particular, in order for thread 1’s CAS to succeed the value of the last write on x should
be 0. If the value of the last write on x is 2, it means that thread 2’s CAS is executed
and the execution point hasn’t reached yet the thread 2’s instruction store lx 0. In this
case the thread 1 CAS fails, and its execution stalls. More concretely, by rule CP4, after
the execution of CAS in thread 1, we can obtain that either a1 = 1∧Vlx : 1W (indicating
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{
(∀t ∈ {1, 2}, o ∈ {x, y, z}.[o]t = [o]P = {0}) ∧ a = 0

}

{ {
[x]2 = {0} ∨ [x]2 = {1}

} }
store x 2;{
true

}

{
[y]P = {0} ∧ [z]P = {0}

}
store x 1;{

[x]2 ⊆ {1, 2} ∧ [y]P = {0} ∧ [z]P = {0}
}

flushopt x;{
[x]A2 ⊆ {1, 2} ∧ [y]P = {0} ∧ [z]P = {0}

}
a := loadx;{
[x]A2 ⊆ {1, 2} ∧ [y]P = {0} ∧ [z]P = {0}

}
if (a = 2){

[x]A2 ⊆ {1, 2} ∧ [y]P = {0} ∧ [z]P = {0}
}

store y 1;{
([x]A2 ⊆ {1, 2} ∨ [y]P = {0}) ∧ [z]P = {0}

}
sfence;{
([x]P ⊆ {1, 2} ∨ [y]P = {0}) ∧ [z]P = {0}

}
store z 1;{
[x]P ⊆ {1, 2} ∨ [y]P = {0} ∨ [z]P = {0}

}{
[x]P ⊆ {1, 2} ∨ [y]P = {0} ∨ [z]P = {0}

}{{
 : [y]P = {1} ∧ [z]P = {1} ⇒ [x]P ⊆ {1, 2}

}}
Figure 5.9: Proof outline for second example of epoch persistency

that the CAS succeed) or a1 = 0. Respectively, in order for thread 2’s CAS to succeed
the value of the last write on x should be 0. If the value of the last write on x is 1, it
means that that thread 1’s CAS is executed and the execution point hasn’t reached yet
the thread 1’s instruction store lx 0. In this case the execution of thread 2 stalls. There
are two ways for Vlx : 0W to hold for thread 2 before the execution of CAS. Either the
CAS reads the initial value of lx or it reads the value that lx obtains after thread 1
executes the instruction store lx 0. In the second case, which is the desirable one, we
are sure that before thread 2 executes CAS, [x]P = [y]P = [y]2 = 1. Those cases are
described in the precondition of CAS in thread 2.

The first disjunct of the precondition concerns the case in which thread’s 2 write on
lx is not executed yet, but the value of the last write on lx is 0. From this, it can be
inferred that lx obtains its initial value. In this case, we are sure that 1 /∈ [x]2. The
consecutive CAS might succeed, although it is certain that thread 2 can not read 1 at
x. As a result, the second if statement of thread 2 fails, thus [z]P ̸= {1}, consequently
the invariant holds.

The second disjunct of the precondition concerns the case in which thread’s 2 store lx 0
has been executed. Because the store of 1 at x by thread 1 is ordered before the store
of 0 at lx, it is certain that at this point of execution VxW1 ∧[x]1 = {1} holds. By rule
CP4 if the consecutive CAS succeeds, thread 1’s view of x is transferred to thread 2.
As a result the if statement that follows succeeds and flush z persists the value 1 at
z. Because either [x]P = {1} ∧ [y]P = {1} or [z]P = {1} for every state of thread 2’s
program, the invariant holds.

The third disjunct of the precondition concerns the case in which thread’s 1 CAS has
succeeded and thus Vx : 1W. In this case thread, 2’s CAS can not succeed and the
invariant holds trivially.
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{
∀v ∈ {lx, x, y, z}, t ∈ {1, 2, 3}. [v]t = {0} ∧ [v]P = {0}

}

{
(Vlx : 0W∧a1 = 0) ∨
(Vlx : 2W∧a1 = 0)

}
a1 :=CAS lx 0 1;{
(a1 = 1 ∧ Vlx : 1W) ∨ a1 = 0

}
if (a1 = 1){
Vlx : 1W

}
store x 1;{
Vlx : 1W∧
[x]1 = {1} ∧ VxW1

}
store y 1;{
Vlx : 1W∧[x]1 = {1} ∧
VxW1 ∧[y]1 = {1}

}
flush x;Vlx : 1W∧[x]P = {1}∧
VxW1 ∧[y]1 = {1}
∧[x]1 = {1}


flush y;Vlx : 1W∧[x]P = {1} ∧
VxW1 ∧[y]P = {1}∧
[x]1 = {1}


store lx 0;{(

[x]P = {1} ∧ [y]P = {1}
)

∨a1 = 0

}



(
Vlx : 0W∧1 /∈ [x]2 ∧
[z]P = {0} ∧ a2 = a3 = 0

)
∨(

Vlx : 0W∧[x]1 = [x]P = [y]P = {1} ∧
VxW1 ∧[z]P = {0} ∧ a2 = a3 = 0

)
∨

(Vlx : 1W∧[z]P = {0} ∧ a2 = a3 = 0)


a2 :=CAS lx 0 2;
(Vlx : 2W∧a2 = 1 ∧ 1 /∈ [x]2 ∧ [z]P = {0})∨(
Vlx : 2W∧[x]P = [y]P = {1} ∧
[z]P = {0} ∧ a2 = 1 ∧ [x]2 = {1}

)
∨

(a2 = 0 ∧ [z]P = {0})


if (a2 = 1)(Vlx : 2W∧1 /∈ [x]2 ∧ [z]P = {0})∨

(Vlx : 2W∧[x]P = {1} ∧ [y]P = {1}∧
[z]P = {0} ∧ [x]2 = {1})


a3 := load y;
(
a3 = 1 ⇒ Vlx : 2W∧[x]P = {1} ∧
[y]P = {1} ∧ [x]2 = {1}

)
∧

Vlx : 2W∧[z]P = {0}


if (a3 = 1){

[x]P = {1} ∧ [y]P = {1} ∧ Vlx : 2W
}

store z 1;{
[x]P = {1} ∧ [y]P = {1} ∧
Vlx : 2W∧[z]1 = {1}

}
flush z;([x]P = {1} ∧ [y]P = {1} ∧ Vlx : 2W

∧[z]P = {1})
∨([z]P = {0} ∧ Vlx : 2W)


store lx 0;{

([x]P = {1} ∧ [y]P = {1} ∧ [z]P = {1})
∨([z]P = {0})

}
{

[z]P = {0} ∨ ([x]P = {1} ∧ [y]P = {1})
}{{

 : [z]P = {1} ⇒ ([x]P = {1} ∧ [y]P = {1})
}}

Figure 5.10: CAS-based locking

5.3 Mechanization

The mechanization of the examples presented in this chapter is built on top of the
Pierogisimp framework. With the base development in place, each example comprises
200–400 lines of code (including the encoding of the program, the annotations, and the
proofs of validity). The validity proofs of these examples took approximately 1 month
of full-time work.
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Chapter 6

dTML under Px86

In this chapter, we focus on the correctness and verification of of transactional memory
algorithms with respect to a realistic memory model, namely Px86. In particular, we
adapt the durable Transactional Mutex Lock (dTMLSC) algorithm (see Chapter 3), which
itself is a durable extension of the Transactional Mutex Lock [38] with logging mecha-
nisms that support recoverability, and show that it is durably opaque. This work brings
together two research areas, the world of hardware weak memory models [32,119,120,123]
and the world of correctness conditions for concurrent objects and transactional memory
in the context of persistent memory (see §2.4.2.1). Unlike these prior works, as the name
implies, dTMLPx86 assumes Intel’s x86 persistency and consistency model (Px86) [78],
which extends the x86 TSO model [131] with a persistency semantics [32,90,120,122,123].

In our initial effort to validate dTMLPx86, we attempted to use Pierogisimp, as detailed
in Chapter 4 ( [24]). However, using this logic directly in our current work is not possible
for two reasons.

(1) Like prior works on verifying Px86 programs [32, 119], Pierogisimp [24] has only
focussed on reasoning about the behaviour up to the first crash of the program. To
fully establish the correctness of dTMLPx86, it is critical to also reason about the
program after restarting the system.

(2) The Pierogisimp assertions are inadequate for reasoning about certain phenomena
that occur in dTMLPx86. In particular, we must often reason about memory pat-
terns by considering the sequence in which writes occur, which previously defined
assertions do not cover.

To this end, we shifted to using the Pierogifull logic (Chapter 4).

To exploit the efficiency possibilities of Px86, we make use of optimized flush instruc-
tions (flushopt ) throughout dTMLPx86. These instructions improve performance by
asynchronously tagging writes that are to be persisted when an sfence or another per-
sist barrier instruction is later encountered (see example Fig. 2.7c). Optimized flush
instructions are however difficult to reason about in the context of Px86view. In fact,
earlier Owicki-Gries logics [119] only provided partial support for flushopt instructions
and required programs with flushopt instructions to be transformed into a program with
synchronized flush instructions only. This transformation technique was known to be
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incomplete [119]. Full support for flushopt could only be provided after the develop-
ment of the view-based semantics for Px86 [32] and their corresponding Owicki-Gries
logic [24]. Our proofs for dTMLPx86 represent the first large-scale proofs of correctness
for a realistic program that uses flushopt .

Our correctness proof of dTMLPx86 uses forward simulation to establish a refinement be-
tween the abstract operational specification dTMS2 (see §3.4.3). This, to our knowledge,
is the first operational proof of refinement for the Px86. Other works have used refine-
ment to verify durable linearizability directly under the declarative Px86 model [53,118].
Unlike our work, these prior works are not accompanied by any mechanization. [41] have
considered operational refinement proofs of transactional memory algorithms under the
RC11 memory model. These proofs have a different set of complexities (e.g., relaxed and
release-acquire accesses), but do not require consideration of durability or recovery as we
do in dTMLPx86.

To summarise, the main contributions of this work are as follows

(1) We develop a durable transactional memory dTMLPx86 that guarantees durable
opacity under Px86view. Our algorithm makes use of optimized flush instructions
for improved efficiency, increasing the verification challenge.

(2) To take advantage of our operational reasoning technique, we apply a simulation-
based proof to show the correctness of dTMLPx86 by refinement. The proof pro-
ceeds via a long-established technique of establishing a forward simulation between
the implementation and an abstract specification [23,44,52]. In the context of trans-
actional memory, we prove that dTMLPx86 is a refinement of an operational model
dTMS2, whose traces are guaranteed to be durably opaque (see Theorem 3.4.1).

(3) We mechanise our entire development ranging from the semantics, logic (including
the soundness of the atomic Hoare triples), and all proofs pertaining to dTMLPx86,
including proofs of the invariant and simulation.

This chapter is organized as follows. In §6.1, we provide some background and further
motivation for our work. In §6.2, we present our dTMLPx86 implementation, and in
§6.3, the dTMLPx86 model. The invariants of dTMLPx86 are demonstrated in §6.4. In
§6.5 we present the durable opacity proof of dTMLPx86. Finally in §6.6 we discuss the
mechanization effort and in §6.7 the related work.

The Isabelle/HOL formalization of the dTMLPx86 correctness proof can be found at
https://doi.org/10.6084/m9.figshare.25037312.v2.

6.1 Motivation

In this work, we are aiming to verify an algorithm that exceeds the complexity of the
litmus test examples verified in Chapter 4 and follows the more complicated compared
to sequential consistency (Chapter 3), but realistic Px86 model. The proposed transac-
tional memory implementation must not only ensure correct thread synchronization and
persistence under the Px86 memory model but also provide transactional correctness.
Below we summarize the challenges introduced by the aforementioned aspects.
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Px86 Semantics. The Px86 model introduces several challenges as analysed in §2.2.2
related to the weak ordering of the Px86view instructions (see Fig. 2.8). As a consequence
of the allowed reorderings, the issuing order of a program’s instructions deviates from
the order in which the effects of the instructions impact the volatile memory. Addition-
ally, these two aforementioned orders differ from the order in which the effects of the
instructions impact the persistent memory. Examples of the weak behaviors exhibited
by the Px86 model can be found in Fig. 2.7.

The Px86 model describes the semantics of programs running in systems that display
Intel-x86 hardware, including an NVM technology such as Optane DC. The logic that
we use to verify dTMLPx86, Pierogifull, covers programs that run on App Direct mode
platforms that support ADR. For brevity we make the assumption that each cache line
only holds one location, eliminating the need to reason about other locations on the same
cache line.

Transactional Memory Correctness. There is extended literature regarding trans-
actional memory correctness. In Chapter 2, we analyze some of the most prominent
correctness conditions. A popular condition here is opacity [67], which ensures that there
exists a total order across all transactions so that the committed transactions are strictly
serialized and the aborted transactions are consistent with the serialization order. While
the above provides semantics for transaction consistency; under persistent memory, we
also require a further guarantee of failure atomicity. To this end, we follow the notion of
durable opacity (Def. 3.1.1), where all transactions committed before a crash are persis-
tent (after the crash), and in addition, the effects of any partially executed transactions
are not visible after the crash.

Implementation Challenges Under Px86. There are two main challenges when
developing durable TM algorithms under weak memory models such as Px86. 1) The
first challenge concerns the thread synchronization. This difficulty is introduced by the
fact that in the relaxed memory context, a read of a shared location may not return the
location’s last written value. For 2) The second challenge concerns durability. Without
placing correctly explicit flush instructions in the algorithm and the careful design of a
recovery mechanism, there is no guarantee on which values are visible in memory after
a system crash.

To tackle the initial challenge under TSO we must use instructions with strong ordering
guarantees (e.g. CAS) at key points within our TM implementation algorithm, prevent-
ing threads from reading stale values. To tackle the second challenge, we strategically
position flushopt along with the sfence instructions in a way that does not compromise
the algorithm’s efficiency. We also design a recovery process that enables the state to be
reset to a consistent state after a crash.

6.2 The dTMLPx86 Algorithm

Pseudocode for dTMLPx86 is given in Fig. 6.1. In order to handle the relaxed behaviors
introduced by Px86, we introduce several extensions to the original TML implementa-
tion [38]. Specifically, the lines highlighted blue ensure correct thread synchronization
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TMBegin
Bp : do loct := load glb;
B1 : until even(loct);

return ok;

TMRead(x)
Rp : rt := loadx;

R1 : if even(loct) ∧ ¬hasReadt then
R2 : hasReadt := CAS glb loct loct;

R3 : if hasReadt then
return rt;

else return abort;
R4 : ct := load glb;
R5 : if ct = loct then

return rt;
else return abort;

TMCommit
Cp : if odd(loct) then
C1 : sfence;
C2 : log .empty();
C3 : ⟨store glb (loct + 1),

writer := None⟩
return commit;

TMWrite(x, v)
Wp : if even(loct) then
W1 : hasWrittent := CAS glb loct (loct + 1);
W2 : if hasWrittent then
W3 : ⟨loct := loct + 1, writer := t⟩

else return aborted

W4 : if ¬log .contains(x) then
W5 : ct := loadx;

W6 : log .update(x, ct);
W7 : store x v;

W8 : flushopt x;
return ok;

TMRecover
Rec1 : while ¬log .isEmpty()
Rec2 : csyst := log .getKey();
Rec3 : store csyst log .getVal(csyst);
Rec4 : flushopt csyst ;

Rec5 : sfence;
Rec6 : log .update(csyst ,⊥);

Rec7 : csyst := load glb;

Rec8 : if even(csyst) then
Rec9 : ⟨store glb csyst + 2,

recGlb := csyst + 2⟩
Rec10 : else ⟨store glb (csyst + 1),

recGlb := csyst + 1⟩

Figure 6.1: Durable Transactional Mutex Lock

under relaxed memory, while the lines highlighted green are required to ensure cor-
rectness under persistency. The variables highlighted grey are auxiliary. All the local
variables apart from the auxiliary ones are modeled as registers. To distinguish them
from global variables, we index the registers with the id of the transaction that they
belong to. As before, we assume that thread identifiers coincide with the transaction
identifiers. As in the previous chapters, we will use the term internal read for a read
that a transaction performs to a location that previously wrote itself, and external read
for a read that a transaction performs to a location that has been written by another
transaction. We also use the term live transaction, for a transaction that has not been
completed (has not returned from a TMCommit operation).

We assume that all locations, the registers for every transaction, the global variable
glb, and the auxiliary variable recGlb, are initialized to zero. Furthermore, the auxiliary
variable writer is initialized to None.

The basic TML algorithm is presented in §3.3.2. We explain the extensions we developed
for adapting TML to Px86view in stages, starting with the extensions that concern correct
synchronization.

123



6.2.1 Correct Synchronization Under Px86

Under Px86, in the presence of multiple writes to a location, a read may return a value
that is not the last written value. A writing transaction must successfully perform a CAS
at line W1, which guarantees that it reads the last written value of glb. However, in the
standard TML algorithm [38, 44] (which assumes sequentially consistent memory), this
synchronization is not present in read-only transactions. Thus, a read-only transaction
may complete with a stale value of glb!

To address this, we follow a similar approach to [41] in the RC11 memory model, and
introduce a CAS in the TMRead operation (R2), mimicking a fetch-and-add-zero to ensure
that the last value of glb is read. Note that this CAS only needs to performed if the
the corresponding transaction has not previously performed a read or a write, thus at
line R1, we bypass R2 when loct is odd or hasReadt holds. If this CAS succeeds the
executing transaction can immediately return the read value, and if this CAS fails, the
transaction can immediately abort (R3).

Although our solution to weak memory synchronization is similar to the RC11 memory
model [41], there are subtle differences in the way our solution guarantees correctness
of reads. Unlike RC11 memory model which requires a “release” synchronization on the
read corresponding to Rp, in TSO, is sufficient to perform a standard read. To explain
the issue, consider the program in Fig. 6.1 without lines R1-R3. An execution of this
program can reach a state with the following memory sequence:

⟨M0, ⟨glb := 1⟩, ⟨x := 1⟩, ⟨glb := 2⟩, ⟨glb := 3⟩, ⟨x := 2⟩, ⟨glb := 4⟩⟩

after executing two transactions writing 1 then 2 to the location x. Now suppose trans-
action t starts, then reads glb := 2 (i.e., loct = 2), allowing it to complete TMBegin, then
performs a TMRead(x) operation. The Px86 semantics allow it to read from the stale
write ⟨x := 1⟩, then commit the transaction, violating opacity.

The program in Fig. 6.1 with lines R1-R3 can also reach the state above. Again suppose
transaction t starts, then reads glb := 2 (i.e., loct = 2), allowing it to complete TMBegin,
then executes a TMRead(x) operation reading the stale write ⟨x := 1⟩. However, now the
transaction proceeds to line R2 and since loct is not the last written value of glb, the
CAS fails, thus the transaction aborts.

6.2.2 Read-only transactions in Px86.

Like [41], we observe other behaviours of dTMLPx86 that would not be present under
SC memory without affecting durable opacity. In particular, a read-only transaction
t is not immediately invalidated when glb is updated by another writing transaction,
provided t continues to read from transactional locations that are consistent with the
an older (stale) value of glb. This read-only transaction would be able to successfully
commit if it never reads a value for x that is more recent than its copy of glb. In case a
read-only transaction reads a value of a location, x at Rp, that is more recent than it’s
local copy of glb, the load of glb at R4 would also read a more recent copy of glb and the
transaction would subsequently abort. This particular synchronization property is much
simpler to guarantee that in the RC11 model [41], which requires careful management of
release-acquire annotations.
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6.2.3 Ensuring durability.

Durability of TML under a stronger sequentially consistent memory model has been
studied in previous work [23] (Chapter 3). The main idea there was to introduce a
durably linearizable [81] persistent undo log that records the previous values of locations
that have been overwritten by incomplete writing transactions. The log is reset to empty
when the writing transaction commits. If a crash occurs when a incomplete writing
transaction t is in flight, the subsequent recovery operation sets the state to the last
consistent state by undoing the writes of t using the undo log.

In dTMLPx86, we use the same recovery mechanism but optimize the algorithm using
flushopt instructions. This is in contrast to dTMLSC (Fig. 3.4), which performs a flush
after every write to memory within the TMWrite operation. The precise semantics of
flushopt was only defined in recent works [32, 122] and is known to be a challenge to
verify. For instance, the POG logic [119] requires a transformation to rewrite flushopt -
sfence sequences with flush instructions and the transformation is known to be in-
complete. Our work uses Pierogifull that deals directly with flushopt instructions via
special assertions that capture the values that persist when an sfence instruction is later
executed.

6.3 dTMLPx86 Model

We build a transition system model for dTMLPx86. In this model, we must clarify possible
histories of the algorithm, which in turn requires us to clarify the invocation and response
events. We assume that the algorithm is executed by a most-general client [52] that calls
the operations of dTMLPx86.

dTMLPx86 Executions and Histories. As with the dTMLSC model, we assume
a program counter pct (initially NotStarted) that is used to model the control flow of
transaction t. When t is in flight, but not executing any operation we have pct =
Ready . Similarly, pct = Aborted and pct = Committed iff t has aborted or committed,
respectively. Otherwise, pct is a line number corresponding to the instruction of the
operation t is executing.

We assume each operation op ∈ {TMBegin, TMRead(x), TMWrite(x, v), TMCommit} gener-
ates an event inv t(op) when op starts executing and rest(op), when op completes.

Ensuring Well-Formed Histories. As described in §3.1, to ensure well-formedness of
histories, we must ensure that transaction identifiers are not reused. Additionally, a live
(i.e., in-flight) transaction before a crash must not continue its execution after the crash.
To this end, we implicitly assume a persistent transaction manager that allocates new
transaction identifiers. As with the dTMLSC model, we use program counters to concisely
characterize this assumption. First note that we assume program counter values of all
threads except the system thread are unchanged after a crash transition (see Fig. 4.2),
thus any transaction t with pct = NotStarted can be executed after a crash. To ensure
that in-flight transactions are not resumed, we assume that recovery starts by setting
pct to Aborted for every transaction t such that pct /∈ {NotStarted ,Aborted ,Committed}
(cf. TMCrashRecovery in Fig. 3.5) .
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Modelling log Operations. The final source of complexity is the durably lineariz-
able [81] log, log. The log and its associated operations are precisely modeled in accor-
dance with the description provided in §3.4.2; therefore, we omit its description here.
An actual implementation of log may synchronize threads, e.g., with mfence operations,
which affects the persistency and thread views of the variables of dTMLPx86. Our proof
makes no such assumptions about log . Namely, we assume the weakest possible ordering
guarantees. Thus, an implementation of log that performs thread synchronization using
fences would not affect the soundness of our result.

6.4 Invariants of dTMLPx86 ( )

This section describes the key invariants of dTMLPx86 and mechanisms for proving their
correctness. These will be used in the simulation proof in §6.5. Our work builds on the
Pierogifull logic which uses view-based expressions derived from the view components
of the thread state. To elaborate, we use the Pierogifull proof rules (see §4.2) combined
with the Owicki-Gries style proof method demonstrated to establish the correctness of
assertions. In §6.4.1 we present the crash invariant and in §6.4.2 we present the dTMLPx86
program annotation.

6.4.1 dTMLPx86 Crash Invariant

To prove the correctness of dTMLPx86 implementation, we construct a multithreaded
program ΠdTMLPx86 based on the model that is introduced in section §6.3. Program
ΠdTMLPx86 includes all dTMLPx86 operations, invocation events, response events and the
system crash event. With the exception of the system thread, which is only capable of
executing the TMRecover operation, any thread t in Tid is free to perform any number of
operations (excluding the recovery operation) as long as the resulting execution history
conforms to the control flow and well-formedness constraints.

In this section, we analyze the crash invariant I of dTMLPx86. We have shown that
the crash invariant holds at any program transition of ΠdTMLPx86 . The corresponding
proofs are mechanized in Isabelle/HOL. The crash invariant constitutes a collection of
properties that the dTMLPx86 implementation preserves. These properties are used to
prove that dTMLPx86 is durably opaque. The most important ones are as follows.

Memory properties. The first three properties describe memory patterns that occur
during the execution of dTMLPx86. In the properties below, assume that i, j ∈ dom(M)
such that i < j are arbitrarily chosen.

Property 1. The values of glb are monotonically increasing, i.e.,

∀vi, vj . M [i] ≡ ⟨glb := vi⟩ ∧M [j] ≡ ⟨glb := vj⟩ =⇒ vi ≤ vj

Property 1 states that the values of glb are monotonically increasing. In contrast to
prior work [23], the recovery process does not reset glb in the event of a crash. This is
necessary in order to avoid TMRead operations returning stale values (values that were
in persistent memory, but subsequently modified) after a crash. To demonstrate this
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phenomenon, consider the program in Fig. 6.1 that resets glb to zero (store glb 0) after
Rec6 instead of executing lines Rec7 − Rec10. An execution of this program can reach
a state with the following memory sequence:

⟨
{
glb 7→ 2, x 7→ 5,_ 7→ 0

}
, ⟨x := 3⟩, ⟨glb := 0⟩, ⟨glb := 1⟩, ⟨y := 1⟩, ⟨glb := 2⟩⟩

which is reached from the initial state post-crash after a (1) a writing transaction updates
x to 3 then commits (so glb = 2), (2) another writing transaction writes updates x to 5
(so log(x) = 3), (3) a crash occurs (resulting in the intial state above), (4) the modified
recovery operation described above executes (appending ⟨x := 3⟩ then ⟨glb := 0⟩ to the
memory), (5) a third writing transaction that updates y to 1 commits successfully.

Now assume that another transaction t starts, then reads 2 for glb from the initial
message, allowing it to complete TMBegin, then performs a TMRead(x) operation. In this
case, according to Px86 semantics, the initial value of x (i.e., 5) is still observable at
Rp. The test at R1 succeeds and the CAS instruction at R2 can still succeed, since the
last value of glb is 2. As a result, t can successfully complete the TMRead operation and
subsequently commit, violating durable opacity.

Property 2. If there exists a write between two writes to glb such that the value of glb
is unchanged, then the location of any intermediate write between these two writes must
be on glb, i.e.,

(∃v. M [i] ≡ ⟨glb := v⟩ ∧M [j] ≡ ⟨glb := v⟩) =⇒ ∀k ∈ [i, j]. M [k].loc = glb

Property 2 holds since this memory pattern can only occur when two or more transactions
that have not performed any read or write yet, perform a TMRead by successfully executing
their CAS instruction at R2. The first of these reading transactions introduces a write
to glb that immediately follows either (1) the initial message, or (2) a write to glb by a
writing transaction at C3, or (3) a message added by the TMRecover process at Rec9 or
Rec10.

Property 3. Between a memory message on glb with even value and another memory
message on a location different from glb, there exists a message with location on glb with
odd value, i.e.,

i > 0 ∧M [i].loc = glb ∧ even(M [i].val) ∧M [j].loc ̸= glb =⇒
∃k ∈ (i, j). M [x].loc = glb ∧ odd(M [x].val)

Property 3 describes the memory pattern that occurs when a transaction performs suc-
cessfully a TMWrite. Note that excluding the initial message and the messages added
from the recovery process, the only way that messages with a location different from
glb are added to the memory is by executing W7. Prior to this point of execution, the
writing transaction performs a successful CAS at W1. The execution of W1 adds a
message to memory with location glb and odd value.

The next property uses maxcoht ≜ λσ.
⊔

x(σ.T(t)).coh(x) and vrnewt ≜ λσ. (σ.T(t)).vrNew.

Property 4. When a TMRecover process is not in progress, for any transaction that is not
a writing transaction, the coherence view for all the locations in memory is less than or
equal to its vrNew view, i.e., ∀t ∈ Tid. ¬Recovering ∧ writer ̸= t =⇒ maxcoht ≤ vrnewt,.
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Property 4 describes partially the thread state of not writing transactions while a recovery
process is not in progress. Specifically, it states that in any given state, for any not-writing
transaction t, the vrnewt timestamp is greater or equal to the maximum among the
coherence view timestamps. This holds because the only cases in which coht x > vrnewt,
is when t is executing a write on x or an internal read to x. Both cases are precluded
for not writing transactions.

Properties about tracked locations and log. We now describe a set of properties
describing the memory locations that are tracked by Px86 and log . Note that we assume
that all locations in Loc different from glb can be transactionally written and read.

Property 5. The domain of the persistent log does not contain the location glb, i.e.,

∀x ∈ dom(log). x ̸= glb.

Property 6. For all locations x ̸= glb that is not in log , the persistent view includes
only their last written value, i.e., ∀x ∈ Loc. x ̸= glb∧ x /∈ dom(log) =⇒ [x]P = {x⃗}.

Properties about glb and recGlb. Next, we have three properties over glb and the
auxiliary variable recGlb.

Property 7. When a writing transaction t is live the last value of glb in the memory
must be odd, i.e., writer ̸= None =⇒ odd(

−→
glb).

Property 7 holds due to the successful execution of W1. Note that the implication does
not hold in the other direction because, in our model, we reset the auxiliary variable
writer to None during a crash, yet the last value of glb after a crash may be odd. One
could have defined a stronger invariant: ¬Recovering =⇒ (writer ̸= None ⇔ odd(

−→
glb)),

however, we have not needed this strengthening in our proofs.

Property 8. With the exception of the initial message, the value of glb is greater than
or equal to recGlb, i.e., ∀i ∈ dom(M). 0 < i ∧M [i].loc = glb =⇒ M [i].val ≥ recGlb.

Property 9. After a transaction t successfully executes TMBegin, the value of loct must
be less than or equal to (

−→
glb). Moreover, after a successful TMWrite and/or TMRead

operation has taken place (i.e., hasReadt ∨ hasWrittent holds), the value of recGlb is less
than or equal to loct, i.e.,

∀t ∈ Tid. (pct /∈ {NotStarted , Bp,B1, B2, Aborted, Committed} =⇒ loct ≤
−→
glb) ∧

((hasReadt ∨ hasWrittent) =⇒ recGlb ≤ loct)

Properties About Recovery. Finally, we have a set of properties about the state
immediately after a crash (before recovery has begun) and after recovery has finished.

Property 10. When a TMRecover process is in progress, all the transactions are either
NotStarted , Aborted or Committed , i.e.,

Recovering =⇒ (∀t. pct ∈ {NotStarted ,Aborted ,Committed}).
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Property 11. When a TMRecover process is not in progress (i.e., has completed), the
value of glb in the initial message is less than the value of the auxiliary variable recGlb,
which in turn is at most the final value of the value of recGlb, and the value of even(recGlb)
is even, i.e.,

¬Recovering =⇒ M [0](glb) < recGlb ∧ recGlb ≤
−→
glb ∧ even(recGlb).

6.4.2 dTMLPx86 Program Annotation

We now enumerate the local properties of each thread by adding program annotations
at each atomic step. The program annotation is formed by view-based expressions
(see §4.2.1). The assertions of dTMLSC can be classified into three categories: (1) trans-
actions that have not yet performed a read or a write ( green assertions ), (2) read-only
transactions ( pink assertions ), and (3) writing transactions ( blue assertions ). The as-
sertions highlighted yellow in Figs. 6.2, 6.4 and 6.5 capture the effects of the preceding
instruction.

We define an assertion readyt, which holds when an in-flight transaction is in an idle
state (i.e., not executing any transactional operation):

readyt =
(
¬hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧

(
loct =

−→
glb =⇒ ∀y.[y]t = {y⃗}

))
∨
(
hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧

(
∀y. y ̸= glb =⇒ readpre(t, y)

))
∨
(
hasWrittent ∧ odd(loct) ∧ writer = t ∧ loct =

−→
glb ∧

(∀y.[y]t = {y⃗}) ∧ (∀y ∈ dom(log). [y]At = {y⃗})

)

The first disjunct captures two local conditions of t: that the local snapshot of glb is
even and the writer is not t, as well as a visibility guarantee that if t’s the local snapshot
of glb is consistent with the last write to glb, then the thread’s view of each location
y is the last write to y. The visibility guarantee ensures that the transaction t can be
serialized after the last writing transaction in case t successfully performs its reads and
commits.

The second disjunct covers read-only transactions as described in §6.2 using the predicate
readpre(t, y) below. We let coht(x) ≜ λσ. (σ.T(t)).coh(x).

readpre(t, y) = coht glb > 0 ∧M [coht glb] ≡ ⟨glb := loct⟩

Predicate readpre(t, y) is established a successful CAS-success transition (see Fig. 4.3).
Namely, the successful CAS transition at R2 in Fig. 6.4 shifts the coherence view of
glb to the length of the memory in the pre-state, which is greater than zero since the
memory includes always the initial message. Furthermore, the second conjunct of readpre
holds because the successful CAS transition appends the message ⟨glb := loct⟩ to the
end of the memory.

The third disjunct of ready is straightforward since a writing transaction takes the lock
(by making glb odd). The only additional guarantee required is that the t’s asynchronous
view of each location in log is maximal. This guarantees that when the transaction later
performs an sfence at C1, all of the writes performed by the transaction are persisted.
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We define an assertion readyt, which holds when an in-flight transaction is in an idle
state (i.e., not executing any transactional operation):

readyt =(
¬hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧

(
loct =

−→
glb =⇒ ∀y.[y]t = {y⃗}

))
∨
(
hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧

(
∀y. y ̸= glb =⇒ readpre(t, y)

))
∨
(
hasWrittent ∧ odd(loct) ∧ writer = t ∧ loct =

−→
glb ∧ (∀y.[y]t = {y⃗}) ∧ (∀y ∈ dom(log). [y]At = {y⃗})

)

The first disjunct captures two local conditions of t: that the local snapshot of glb is
even and the writer is not t, as well as a visibility guarantee that if t’s the local snapshot
of glb is consistent with the last write to glb, then the thread’s view of each location
y is the last write to y. The visibility guarantee ensures that the transaction t can be
serialized after the last writing transaction in case t successfully performs its reads and
commits.

The second disjunct covers read-only transactions as described in §6.2 using the predicate
readpre(t, y) below. We let coht(x) ≜ λσ. (σ.T(t)).coh(x).

readpre(t, y) = coht glb > 0 ∧M [coht glb] ≡ ⟨glb := loct⟩

Predicate readpre(t, y) is established a successful CAS transition (see Fig. 4.3). Namely,
the successful CAS transition at R2 in Fig. 6.4 shifts the coherence view of glb to the
length of the memory in the pre-state, which is greater than zero since the memory
includes always the initial message. Furthermore, the second conjunct of readpre holds
because the successful CAS transition appends the message ⟨glb := loct⟩ to the end of
the memory.

The third disjunct of ready is straightforward since a writing transaction takes the lock
(by making glb odd). The only additional guarantee required is that the t’s asynchronous
view of each location in log is maximal. This guarantees that when the transaction later
performs an sfence at C1, all of the writes performed by the transaction are persisted.

The TMBegin annotation. We start with discussing the annotation of the TMBegin
operation. In the initial state, all the registers are initialized to zero, therefore both the
hasWrittent and hasReadt registers are set to zero (false). The implication at PB1 states
that if the value read for glb is even and is consistent with the last write of glb, then
t’s thread view for every location contains only its last value. The program annotations
for TMRead and TMWrite guarantee that a subsequent read or write operation can only
succeed if loct remains consistent with the last value of glb after the execution of Bp.
PB1 is adequate to establish readyt, in particular its first disjunct.

The TMRead annotation. Perhaps the most important part of the TMRead anno-
tation ( Fig. 6.4) lies in explicitly identifying the specific loaded value obtained at Rp
that leads to a successful TMRead operation. Supposing that a transaction t executes a
TMRead operation, there are three distinct cases.

• If t has not performed a read or a write yet, then the ready assertion specifies that
in case loct is equal to the last value of glb and the thread view for all the locations
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TMBegin

PBp :
{

¬hasReadt ∧ ¬hasWrittent ∧ writer ̸= t
}

Bp : do loct := load glb

PB1 :


(
¬hasReadt ∧ ¬hasWrittent ∧ writer ̸= t

∧ (even(loct) =⇒ (loct =
−→
glb =⇒ (∀y. [y]t = {y⃗})))

) 
B1 : until even(loct);

return ok ;
{
readyt

}
Figure 6.2: TMBegin annotation
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Figure 6.3: Example execution for read-only transactions

in memory contains only their last writes. In such case, in the post-state of Rp it
is guaranteed that the loaded value corresponds to the last write at x (rt = x⃗). In
case that loct is not equal to the last value of glb, the CAS instruction at R2 fails
and thus t aborts.

• If t is a read-only transaction, the valid value to be read for x is deterministic and
corresponds to the value of the memory message with timestamp LEcoh(glb, t, x).
To establish this, we prove an additional lemma that demonstrates the follow-
ing: If readpre(t, x), Property 1, Property 3 and Property 8 hold in the pre-state,
then, upon executing rt := loadx, loct is visible to t on location glb if the loaded
value matches the value of the message M [LEcoh(glb, t, x)] (i.e., loct ∈ [glb]t =⇒
M [LEcoh(glb, t, x)] ≡ ⟨x, rt⟩).

• If t is a writing transaction, its thread views of all the locations in memory consist
solely of their most recent writes. This is due to the fact that t had previously
executed a successful CAS instruction at W1, which effectively constrains the
visibility of t to its last writes for all locations. Consequently, in this scenario, the
TMRead operation consistently succeeds, and rt = x⃗.

We now discuss in more detail, the correctness proof of read-only transactions, which is
the most challenging aspect of the proof. We use the example in Fig. 6.3 with an abstract
history h comprising three transactions t1-t3. Transactions t1 and t2 can not be reordered
due to the real-time order constraint of durable opacity (see Def. 3.1.1). Moreover, since
the first read of transaction t3 has returned t1 for x, the only valid sequential history
corresponds to the ordering (t1 ≺ t3 ≺ t2). Thus, the second read in transaction t3 must
either return 7 for y, or abort.

In the implementation, we must identify the timestamp of the write that a read-only
transaction reads from and does not lead to an abort. To this end, let vrnewt(x) ≜
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λσ. (σ.T(t)).vrNew In the example in Fig. 6.3, we have LEcoh(glb, t3, y) = 3 since t3’s
coherence view of glb is memory index 5, and the last write to y before index 5 is at
index 3. Note that we instantiate this to LEcoh(glb, t3, y) in the second disjunct of PR1
in Fig. 6.4.

Provided that t3 reads from the memory at index 3, the message at index 5 will still be
observable to t3. Therefore, it can read this message at R4 so that the check at R5 does
not fail. We can prove that the second read of t3 can only succeed if it reads from index
3 by contradiction.

Case 1: t3 reads a message with timestamp greater than LEcoh(glb, t3, y) at Rp.
In Fig. 6.3, the only such message is at index 8. Using Property 3, in the post-state of
Rp, there exists a timestamp ts between coht3(glb) (i.e., 5) and coht3(y) (i.e., 8), such
that M [ts] ≡ ⟨glb := v⟩ and odd(v). In our example, ts = 6.

Every observable timestamp for glb can be shown to be greater than or equal to ts
(i.e. 6) and thus greater than coht3(glb) (i.e., 5) by using Property 4. Transaction t3
must read a value for glb at R4 that is different from loct3 . By the third conjunct of the
pink disjunct of readyt3 , we have even(loct3). Moreover by Property 1, each value of
glb after ts is at least v. Since odd(v), we have v ̸= loct3 , thus t3 cannot observe loct3
for glb.

Case 2: t3 reads a message with timestamp less than LEcoh(glb, t3, y) at Rp.

In Fig. 6.3, such a message is the initial message (with timestamp 0). By Property 4,
vrnewt must be at least coht3(glb) (i.e., timestamp 5). However, LEcoh(glb, t3, y) over-
writes this earlier message, and hence the earlier timestamp is no longer visible to t3.

The TMWrite annotation. Figure 6.5 depicts the TMWrite annotation. The check
performed at Wp determines whether a transaction t has previously executed a write
operation. If the number of locations loct written by t is even, it means that t has not
performed any writes yet. Consequently, PW1 asserts that hasWrittent is false and
writer ̸= t. Additionally, PW1 ensures that if t is a writer, the asynchronous view for t of
all locations in log , except for location x, is maximal. This guarantees that if t becomes a
writing transaction and executes an sfence at C1, all of its writes will persist. Location x
is excluded because, between the write operation at x (W7) and the asynchronous flush
of the new write (W8), the asynchronous view of x contains both its old value and the
newly written value (x⃗). Finally, PW1 states that the address to be written (x) is not
equal to glb, which is necessary to establish Property 5.

Next, t attempts to acquire the single global versioned lock glb by executing CAS at
W1. A successful CAS operation sets the hasWrittent register to true, indicating that t
has become a writing transaction. As stated in PW2, in this case, the last written value
at glb is set to loct incremented by one, and the thread view of t for all memory locations
is updated to include only their last written values. On the other hand, if CAS fails, it
indicates the presence of another concurrent writing transaction, causing t to abort.

The subsequent execution of W3 increments loct by one. Therefore, according to PW4,
loct becomes equal to the last value of glb. Additionally, the auxiliary variable writer is
set to t.

Lines W4 − W9 encompass the following operations: updating the log (W4 − W6),
performing the write at x (W7), and subsequently asynchronously flushing it (W8).
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The corresponding assertions remain unchanged, except for the final condition of PW6.
This condition states that x is going to be updated to its last written value (ct) in log .
Establishing the condition ready, particularly its third disjunct, from PW8 is straight-
forward. It should be noted that after the execution of W8, the asynchronous view of
x contains only its last written value (as per the OP rule in Fig. 4.7). The combina-
tion of the above condition with PW8 is sufficient to establish that the asynchronous
view of t for all locations in the domain of log contains only their last written value
((∀y ∈ dom(log). x ̸= y =⇒ [y]At = y⃗).

The TMCommit annotation. Fig. 6.6 illustrates the TMCommit annotation. Trans-
actions that have not performed any read or write and read-only transactions commit
without any further check. In the case of a writing transaction t, according to the asser-
tion ready, loct is odd, hasWrittent is true, writer = t, the thread view of t for any location
y includes only the last stored value at y, and the asynchronous view of t for any location
y that belongs to the domain of log includes only the last stored value at y. It is worth
noting that the locations that belong to the domain of log , are the only locations that
have been updated by a writing transaction t. As seen at the postcondition of C1, after
the execution of sfence the asynchronous views of t for the aforementioned locations
become equal to their persistent views. Having the above stated prior to emptying the
log ( i.e. at PC2) is sufficient for establishing locally Property 6. Property 6, guaran-
tees that during the execution and commit of read-only transactions, and after writing
transactions commit, the value can be observed in persistent memory for any location x
apart from glb is deterministic and equal to the last written value on x.

The TMRecover annotation. Fig. 6.7 illustrates the TMRecover annotation. The
TMRecover annotation serves three purposes. (1) It provides sufficient information about
the memory state after a crash event and during the TMRecover process, in order to
establish that Property 1 and Property 2 locally hold. The above is enabled by the
assertion: ∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb, which ensures that during
recovery, all the memory messages, apart from the initial one represent writes to locations
different from glb. For showing this during copying and emptying the log we use the
Property 5. (2) It guarantees the consistency of memory upon completion of the recovery
process. This is accomplished by Property 6 in combination with rules C1 and C3 (see
Figure 4.9). By applying Property 6 and the aforementioned rules, any location y
within the initial message is mapped to its persisted value y⃗, which represents the last
value written to y by a committed transaction prior to the system crash. Moreover,
the recovery process sequentially restores all the locations recorded in the log . The
TMRecover annotation guarantees that the recovered values correspond to those stored
in the log . (3) It guarantees that by the completion of the recovery process, the last
written value in glb is even and greater than its initial value.

Theorem 6.4.1 ( ). The proof outline for dTMLPx86 is valid.
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TMRead(x)
PRp :

{
readyt

}
Rp : rt := loadx;

PR1 :



(
¬hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧ (loct =

−→
glb =⇒ rt = x⃗ })

)
∨

(
hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧(

loct ∈ [glb]t =⇒ M [LEcoh(glb, t, x)] ≡ ⟨x, rt⟩ ∧ (∀y. y ̸= glb =⇒ readpre(t, y))
))

∨

(
hasWrittent ∧ odd(loct) ∧ writer = t ∧ loct =

−→
glb ∧

rt = x⃗ ∧ (∀y. [y]t = {y⃗}) ∧ (∀y ∈ dom(log). [y]At = {y⃗})

)


R1 : if even(loct) ∧ ¬hasReadt then

PR2 :
{

¬hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧ (loct =
−→
glb =⇒ rt = x⃗)

}
R2 : hasReadt := CAS glb loct loct

PR3 :
{
hasReadt ⇒ readyt

}
R3 : if hasReadt then

PRa :
{
readyt

}
Rr : return rt

{
readyt

}
else return abort

{
true

}

PR4 :



(
hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧ x ̸= glb ∧(
loct ∈ [glb]t =⇒ M [LEcoh(glb, t, x)] ≡ ⟨x, rt⟩ ∧ (∀y. y ̸= glb =⇒ readpre(t, y))

))

∨

(
hasWrittent ∧ odd(loct) ∧ writer = t ∧ loct =

−→
glb ∧ x ̸= glb ∧

rt = x⃗ ∧ (∀y. [y]t = {y⃗}) ∧ (∀y ∈ dom(log). [y]At = {y⃗})

)


R4 : ct := load glb;

PR5 :



(
hasReadt ∧ ¬hasWrittent ∧ even(loct) ∧ writer ̸= t ∧ x ̸= glb ∧
( ct = loct =⇒ M [LEcoh(glb, t, x)] ≡ ⟨x, rt⟩ ∧ (∀y. y ̸= glb =⇒ readpre(t, y)))

)

∨

(
hasWrittent ∧ odd(loct) ∧ writer = t ∧ x ̸= glb ∧ loct =

−→
glb ∧

rt = x⃗ ∧ ct = loct ∧ (∀y ∈ dom(log). [y]At = {y⃗})

)


R5 : if ct = loct then
PRb :

{
readyt

}
Rr : return rt

{
readyt

}
Ab : else return abort ;

{
true

}
Figure 6.4: TMRead annotation
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TMWrite(x, v)
PWp :

{
readyt

}
Wp : if even(loct) then

PW1 :

{
even(loct) ∧ ¬hasWrittent ∧ writer ̸= t

∧ (writer = t =⇒ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗})) ∧ x ̸= glb

}
W1 : hasWrittent := CAS glb loct (loct + 1);

PW2 :

{
(hasWrittent =⇒ (∀y. [y]t = {y⃗}) ∧ Succ(loct) = g⃗lb)

∧(writer = t =⇒ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗})) ∧ x ̸= glb

}
W2 : if hasWrittent then

PW3 :

{
hasWrittent ∧ (∀y. [y]t = {y⃗}) ∧ Succ(loct) = g⃗lb
∧(writer = t =⇒ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗})) ∧ x ̸= glb

}
W3 : ⟨xt := loct + 1, writer := t⟩

else return abort ;
{
true

}
PW4 :

 odd(loct) ∧ loct = g⃗lb ∧ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗}) ∧ writer = t

∧hasWrittent ∧ (∀y. [y]t = {y⃗}) ∧ x ̸= glb


W4 : if ¬log .contains(x) then

PW5 :

{
odd(loct) ∧ loct = g⃗lb ∧ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗}) ∧ writer = t
∧hasWrittent ∧ (∀y. [y]t = {y⃗}) ∧ x ̸= glb

}
W5 : ct := loadx;

PW6 :

 odd(loct) ∧ loct = g⃗lb ∧ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗}) ∧ writer = t

∧hasWrittent ∧ (∀y. [y]t = {y⃗}) ∧ x ̸= glb ∧ ct = x⃗


W6 : log .update(x, ct);

PW7 :

{
odd(loct) ∧ loct = g⃗lb ∧ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗}) ∧ writer = t
∧hasWrittent ∧ (∀y. [y]t = {y⃗})

}
W7 : store x v;

PW8 :

{
odd(loct) ∧ loct = g⃗lb ∧ (∀y ∈ dom(log). x ̸= y =⇒ [y]At = {y⃗}) ∧ writer = t
∧hasWrittent ∧ (∀y. [y]t = {y⃗})

}
W8 : flushopt x;

PWr :
{
readyt

}
Wr : return ok ;

{
readyt

}
Figure 6.5: TMWrite annotation

TMCommit
PCp :

{
readyt

}
Cp : if odd(loct) then

PC1 :

{
hasWrittent ∧ writer = t ∧ (∀y. [y]t = {y⃗}) ∧ loct = g⃗lb
∧(∀y ∈ dom(log).[y]At = {y⃗})

}
C1 : sfence;

PC2 :

{
hasWrittent ∧ writer = t ∧ (∀y. [y]t = {y⃗}) ∧ loct = g⃗lb
∧(∀y ∈ dom(log).[y]P = {y⃗})

}
C2 : log .empty();

PC3 :
{
hasWrittent ∧ writer = t ∧ (∀y. [y]t = {y⃗}) ∧ loct = g⃗lb

}
C3 : ⟨store glb (loct + 1),

writer := None⟩
{
true

}
Cr : return commit;

{
true

}
Figure 6.6: TMCommit annotation
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TMRecover

PRec1 :

{
writer = ⊥ ∧ (∀y. [y]syst = {y⃗})
∧(∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec1 : while ¬log .isEmpty()

PRec2 :

{
dom(log) ̸= {} ∧ writer = ⊥ ∧ (∀y. [y]syst = {y⃗})
∧(∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec2 : csyst := log .getKey();

PRec3 :

{
csyst ∈ dom(log) ∧ writer = ⊥ ∧ (∀y. [y]syst = {y⃗})
∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec3 : store csyst log .getVal(csyst);

PRec4 :

{
csyst ∈ dom(log) ∧ writer = ⊥ ∧ (∀y. [y]syst = {y⃗})
∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec4 : flushopt csyst ;

PRec5 :

{
csyst ∈ dom(log) ∧ writer = ⊥ ∧ (∀y. [y]syst = {y⃗})
∧ [csyst ]

A
syst = { ⃗csyst} ∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec5 : sfence;

PRec6 :

{
csyst ∈ dom(log) ∧ writer = ⊥ ∧ (∀y. [y]syst = {y⃗})
∧ [csyst ]

P = { ⃗csyst} ∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec6 : log .update(csyst ,⊥);

PRec7 :

{
dom(log) = {} ∧ writer = ⊥ ∧ (∀y. [y]syst = {y⃗})
∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec7 : csyst := load glb;

PRec8 :

{
csyst = M [0](glb) ∧ dom(log) = {} ∧ writer = ⊥
∧(∀y. [y]syst = {y⃗}) ∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec8 : if even(csyst) then

PRec9 :

{
even(csyst) ∧ dom(log) = {} ∧ writer = ⊥ ∧ csyst = M [0](glb)
∧(∀y. [y]syst = {y⃗}) ∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec9 : ⟨store glb csyst + 2,

recGlb := csyst + 2⟩
{
pcsyst = Reccomplete

}
PRec9 :

{
odd(csyst) ∧ dom(log) = {} ∧ writer = ⊥ ∧ csyst = M [0](glb)
∧(∀y. [y]syst = {y⃗}) ∧ (∀ts ∈ dom(M).ts > 0 =⇒ M [ts].loc ̸= glb)

}
Rec10 : else ⟨store glb (csyst + 1),

recGlb := csyst + 1⟩
{
pcsyst = Reccomplete

}
Figure 6.7: TMRecover annotation
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6.5 Durable Opacity of dTMLPx86 ( )

To show that dTMLPx86 is durably opaque, we establish a forward simulation between
the dTMLPx86 transition system and the dTMS2 specification (see §3.4.3). The dTMS2
specification is shown to imply durable opacity (Theorem 3.4.1).

It is well known that a forward simulation is a sound proof technique for refinement. As
in proofs of linearizability [52], refinement must guarantee trace inclusion, i.e. that every
externally observable behavior of the concrete system (i.e. dTMLPx86) is an externally
observable behavior of the abstract system (i.e. dTMS2). Here, the external steps (i.e.,
transitions) correspond to invocations and responses of transactional operations as well
as the system crashes. We now give a more general definition of forward simulation than
the one presented in Chapter 3 that does not apply only to input/output automata but
to any transition system.

Definition 6.5.1 (Forward simulation). For an abstract system A and a concrete
system C, a relation R between the states of A and C is a forward simulation iff each of
the following holds.

Initialisation. For any initial state cs0 of C, there exists an initial state as0 of A such that
R(as0, cs0).

External step correspondence. For any external transition from cs to cs′ in C and any
state as of A such that R(as, cs), there exists an external transition from as to as′

such that R(as, cs).

Internal step correspondence. For any internal transition from cs to cs′ of C and any
state as of A such that R(as, cs), either:

• R(as, cs′), or (stuttering step)

• there is an internal transition of A from as to as′ such that R(as′, cs′).
(non-stuttering step)

We start with identifying the linearization points of its dTMLPx86 operation. Operation
TMBegin linearizes at B1 provided loct is even. For transactions that have not performed
any TMRead or TMWrite, the linearization point of TMRead is a successful CAS at R2.
For any other type of transaction, TMRead linearizes at R5 provided the value read from
glb is loct. Operation TMWrite linearizes when the memory is updated at W7. Oper-
ation TMCommit has two linearization points depending on whether the transaction has
successfully executed a TMWrite operation. For a writing transaction (i.e., when loct is
odd), TMCommit linearizes at C2. Otherwise, TMCommit linearizes at Cp.

The forward simulation relation (R) for our dTMS2-dTMLPx86 refinement obtains the
same form as of the forward simulation relation presented in Chapter 3. Specifically,
it splits into two relations: a global relation globalR and a transactional relation txnR.
The global relation describes how the shared states of the two transition systems are
related, while the transactional relation specifies the relation between the state of each
transaction in the concrete and abstract transition system. The simulation itself is

R(cs, as) = globalR(cs, as) ∧ ∀t ∈ Tid. txnR(cs, as, t)
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Our simulation relation assumes the following auxiliary definitions, where cs is the con-
crete state and as is the abstract state. As in Chapter 3, intHalf (n) ≜

⌊
n
2

⌋
, returns the

integer part of n divided by 2.

writes(cs, as) ≜ if cs.writer = t ∧ pct ̸= C3 then as.wrSett else ∅
logicalGlb(cs) ≜ if cs.writer = t ∧ pct = C3

then cs.
−→
glb− cs.recGlb+ 1 else cs.

−→
glb− cs.recGlb

wrCount(cs) ≜ intHalf (logicalGlb(cs))

inFlight(t, cs) ≜ t ∈ Tid ∧ pct /∈ {NotStarted ,Aborted ,Committed}

Function writes returns the abstract wrSett of a writing transaction. Note that the
abstract wrSett is empty after the writing transaction has cleared its log and hence
linearized TMCommit at C2. Function logicalGlb is used to determine the logical value of
glb (since initialization or the last recovery) and as in the refinement proof of dTMLSC

compensates for the fact that a committing writing transaction has linearized by not
yet incremented glb at C3. Function wrCount(cs) returns the number of committed
writing transactions in the concrete state, taking into account the fact that each writing
transaction updates glb twice. Finally, inFlight is used to determine whether the given
transaction t in state cs is live (has been started but has not been committed or aborted).

6.5.1 Global Relation of the dTMLPx86-dTMS2 Simulation Relation

The global relation globalR comprises conditions (6.1)-(6.4) below. The definition relies
on LE(t, x) which returns the timestamp of the last write to x before timestamp t.

globalR(cs, as) =
¬Recovering ⇒ (∀x. x ̸= glb ⇒ x⃗ = (last(as.L)⊕ writes(cs, as))(x)∧ (6.1)
¬Recovering ⇒ (wrCount(cs) = |as.L| − 1)∧ (6.2)
∀x. x ̸= glb ⇒ last(as.L)(x) = if x /∈ dom(cs.log)then x⃗ else (cs.log)(x)∧ (6.3)
∀i. ∀v. cs.M [i] ≡ ⟨glb := v⟩ ⇒ ∀x. ∀w. x ̸= glb ∧ cs.M [LE(i, x)] ≡ ⟨x := w⟩ ⇒

as.L[intHalf (v − cs.recGlb)](x) = w
(6.4)

The first two conditions assume that the recovery process is not in progress.

Condition (6.1) states that, for each location x different from glb, the last written value
for x in dTMLPx86 is the value of x in the last memory snapshot of dTMS2 overwritten
by the write set of an in-flight writing transaction (if there is any).

Condition (6.2) states that the number of memory snapshots in dTMS2 memory since
initialization or the last crash is equal to wrCount(cs).

Condition (6.3) states that, for each location x different from glb, the value of x in the
last memory snapshot of dTMS2 is the last written value for x in dTMLPx86 whenever
x is not in log and is the corresponding value in log , otherwise.
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Condition (6.4) states that whenever dTMLPx86’s memory index i contains a write to
glb with value v, for any location x different from glb, the value of the last write to x
before index i is precisely the value of x in the abstract memory snapshot indexed by
intHalf (v − cs.recGlb).

The globalR relation and program annotations work together to match abstract and
concrete values during external reads. For example, suppose a read-only transaction
TMRead(x) in dTMLPx86 reads x for the first time, returning a value v. The first step
of the refinement proof requires identifying the timestamp of the dTMLSC memory with
location x and value v. The remaining step is to check that the corresponding element
satisfies the validity constraint, validIdx , imposed by dTMS2 to ensure that dTMS2 can
indeed, take the corresponding abstract step.

6.5.2 Transactional Relation of the dTMLPx86-dTMS2 Simulation Re-
lation

The transaction relation (txnR) part of the forward simulation comprises the conditions
(6.5)-(6.10) below as well as the condition that we describe at the end of the section

∀t. inFlight(t, cs) ∧ ¬cs.hasWrittent ∧ ¬cs.hasReadt ⇒ as.rdSett = ∅ (6.5)
∀t. inFlight(t, cs) ∧ cs.hasReadt ⇒ as.rdSett ̸= ∅ (6.6)

∀t. inFlight(t, cs) ∧ (¬cs.hasWrittent ∨ even(cs.loct)) ⇒ as.wrSett = ∅ (6.7)
∀t. inFlight(t, cs) ∧ odd(cs.loct) ∧ cs.pct /∈ {Bp,B1,W4−W7} ⇒ as.wrSett ̸= ∅ (6.8)

∀t. inFlight(t, cs) ∧ cs.writer = t ∧ cs.pct /∈ {W4−W7} ⇒ as.wrSett ̸= ∅ (6.9)
∀t.∀x ∈ dom(as.wrSett). cs.writer = t ⇒ (as.wrSett)(x) = cs.x⃗ (6.10)

The first five conditions relate the dTMLPx86 state of an inFlight transaction t with the
wrSett and rdSett variables of the corresponding dTMS2 state. By (6.5), if cs.hasReadt
and cs.hasWrittent are false then as.rdSett is empty. By (6.6) if cs.hasReadt is true then
as.rdSett is not empty. By (6.7) if cs.hasWrittent is false or the value of cs.loct is even
then the as.wrSett is empty. By (6.8) if the value of cs.loct is odd and the program counter
of t is not Bp or B1, where loct has not yet obtained a valid starting value and is also
not in W4−W7, where t has not performed yet any write even though loct is odd, then
cs.wrSett can not be empty. Finally by (6.9), if t is a writing transaction (as.writer = t)
and its program counter is not in W4−W7, then as.wrSett is also not empty. Determining
when the write set of a transaction is empty is particularly important, as dTMS2 imposes
different ordering constraints to the read-only transactions from the writing transactions
in TMCommit. Condition (6.10) resolves internal reads by specifying that the dTMS2
write set (as.wrSett) for a transaction t should include the most recent value written by
dTMLPx86 for each location in the write set domain.

We now provide a description of the final condition of txnR. We summarise its main
purposes above.

1) Maps abstract with concrete pc values. Firstly, as with the correctness proof of
dTMLSC, the final condition maps the dTMLPx86 program counter values to their dTMS2
counterparts. The mapping is depicted in Table 6.1. The steps in which the concrete pc
values are mapped to the same abstract pc value in the pre and post-state are stuttering
steps, while the steps in which the concrete pc values are mapped to different abstract
pc values in the pre and post state are non-stuttering steps.
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cs.pc : NotStarted Aborted Ready Committed
as.pc : NotStarted Aborted Ready Committed

cs.pc : Bp,B1 Br Rp−R2
R3 ∧ ¬cs.hasReadt,
R4, R5

R3 ∧ cs.hasReadt,
Rr

as.pc : BeginPending BeginResponding ReadPending(x) ReadResponding(v)

cs.pc : Wp−W7 W8,Wr Cp,C1, C2 C3, Cr
as.pc : WritePending(x, v) WriteResponding CommitPending CommitResponding

Table 6.1: Mapping of dTMLPx86 to dTMS2 pc values.

2) Maps the returned read values to their abstract counterparts. Secondly,
the final condition ensures that the value returned by a dTMLPx86’s successful read on
x (TMRead(x)) is the same as the value returned in the corresponding non-stuttering step
of dTMS2. We give an overview of the proof for identifying the corresponding values
above.

Case: Read-only transaction. The first read (TMRead(x)) of a read-only transaction t suc-
ceeds if cs.loct obtains the maximum value of cs.glb. Otherwise, the CAS instruction
at R2 fails. Based on the precondition of R2 (P2) (see Fig. 6.4), if the CAS instruction
succeeds, we can deduce that ⃗cs.glb = cs.loct and cs.loct is even. Additionally, we can
infer that there is no message with a timestamp greater than or equal to the timestamp
corresponding to the last write of cs.glb with a location different from glb. This is be-
cause, according to Property 3, if such a write existed, the value of the last write of glb
would be odd. Therefore, the timestamp of the message read for x precedes the times-
tamp of the message of the last write of cs.glb and must have the form LE(i, x), where
cs.M [i] ≡ ⟨cs.glb := cs.loct⟩. By instantiating Condition (6.4), we can infer that the
value read for x corresponds to the abstract value as.L[intHalf (cs.loct−cs.recGlb)](x).

For any subsequent read operation (TMRead(x)) performed by a read-only transac-
tion t, we can derive the index of the memory snapshot of dTMS2 that contains the
returned write directly by the TMRead program annotation. Specifically, the TMRead
program annotation (assertion P5 in Fig. 6.4) imposes that the only value that can
be successfully returned by dTMLPx86 corresponds to the concrete memory message
with timestamp LEcoh(cs.glb, t, x). By expanding the definition of LEcoh, we obtain
LEcoh(cs.glb, t, x) = M [LE(coht cs.glb, x)]. Given this, and by using condition (6.4),
we can determine that the index of the memory snapshot of dTMS2 containing this
write is as.L[intHalf (cs.loct − cs.recGlb)].

Case: Writing transaction. According to the TMRead program annotation (assertion P5
in Fig. 6.4), a read operation on x (TMRead(x)) of a writing transaction t can only return
the last value written on x (cs.x⃗). In case the read is external by utilizing condition
(6.1) we can deduce that the corresponding abstract value is equal to last(as.L)(x). In
case the read is internal by condition (6.10) the corresponding abstract value is equal
to (as.wrSett)(x).

3) Guarantees that the ordering constraints of dTMS2 are met. Thirdly, the
final condition incorporates Conditions (6.11) and (6.12), which are sufficient for demon-
strating that the ordering (validity) constraints of dTMS2 are met. These conditions
guarantee that for any read-only transaction t, when TMRead and TMCommit linearize,
there exists a timestamp (i.e., n = intHalf (cs.loct − cs.recGlb)) such that validIdx (t, n)
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holds. Furthermore, they ensure that for any writing transaction t that performs an ex-
ternal read, when TMRead linearizes, validIdx (t, intHalf (cs.loct − cs.recGlb)) again holds.
Lastly, Condition (6.11) helps in determining that for any writing transaction t, when
TMCommit linearizes, as.rdSett ⊆ last(as.L).

∀t.(inFlight(t, cs)∧

(cs.pct ∈ {Ready,Wp,Wr,Rp,Rr, Cp} ∧ loct = g⃗lb)

∨ cs.pct ∈ {W1−W8, R1−R5, C1− C2})
⇒ as.rdSett ⊆ as.M [intHalf (cs.loct − recGlb)] (6.11)

∀t.(inFlight(t, cs)∧

(cs.pct ∈ {Ready,Wp,Wr,Rp,Rr, Cp} ∧ loct = g⃗lb)

∨ cs.pct ∈ {W1−W8, R1−R5, C1− C2})
⇒ as.beginIdxt ≤ intHalf (cs.loct − recGlb) (6.12)

4) Ensures that the abstract memory is consistent with the concrete memory
after the TMRecover process of dTMLPx86 takes place. Lastly, the final con-
dition ensures that after a TMRecover operation completes, the dTMLPx86 memory list
is consistent with the dTMS2 memory. Specifically, it ensures that immediately after
a crash, the length of the dTMS2 memory list is 1, the transaction that executes the
TMRecover operation is syst and the value of each location x that is read and cleared
from the cs.log in each recovery loop is equal to the corresponding value of x the memory
snapshot of dTMS2.

6.5.3 Step Correspondence Between dTMLPx86 and dTMS2

We now describe precisely the step correspondence between dTMLPx86 and dTMS2. For
this we use a step corresponding function sc, of the form sc(cs, t, α) = β, where cs is
a concrete state, t is a transaction identifier, α is an internal transition of dTMLPx86
and β is the internal transition of dTMS2 that corresponds to α in case α indicates a
non-stuttering step. In case α indicates a stuttering step sc returns ⊥.

• A begin operation takes effect at B1. The pc mapping provided by txnR
(Fig. 6.1) guarantees that the corresponding abstract transition is doBegint. Thus
if α = B1 then sc(cs, t, α) = doBegint.

• A read operation takes effect at R2 for the first read of a read-only transaction,
provided that the corresponding CAS instruction succeeds, and at R5 for a writing
transaction or subsequent reads of a read-only transaction provided that cs.loct
is equal to cs.glb. The concrete to abstract mapping of program counter values
(Fig. 6.1) guarantees that the read address coincides for both TMS2 and dTMLPx86
and that in both cases, the corresponding abstract transition is doReadt(x) .

In all cases, excluding internal reads, by the final condition, we have that the suc-
cessfully loaded value corresponds to the as.L[intHalf (cs.loct−cs.recGlb)](x) value
of the abstract memory. Combining, the TMRead annotation (see Fig. 6.4), Condi-
tion (6.2) and Condition (6.12) we can deduce that at both R2 and R5
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as.beginIdxt ≤ intHalf (cs.loct − cs.recGlb) < |as.L|. Furthermore, by Condition (6.11)
we have that as.rdSett ⊆ as.L[intHalf (cs.loct − cs.recGlb)].
Therefore validIdx (t, intHalf cs.loct − cs.recGlb) holds. Having this, if α = R2
(resp.α = R5) and the corresponding CAS instruction succeeds (resp. cs.glb =
loct) then sc(cs, t, α) = doReadt(x) ∧ validIdx (t, intHalf cs.loct − cs.recGlb).

• A write operation takes effect when a transaction t executes W7. The pc mapping
provided by txnR (Fig. 6.1) guarantees that the the corresponding abstract action
is doWritet(x, v). Thus if α = W7 then sc(cs, t, α) = doWritet(x, v). As before
the pc mapping provided by txnR ensures that as.pct obtains the correct value.

• A commit operation is executed at Cp for a read-only transaction and at C2 for
a writing transaction. In both cases (α = Cp or α = C2), we have sc(cs, t, α) =
doCommitt. Moreover, similar to the case of a read operation, we can deduce that
validIdx (t, intHalf cs.loct − cs.recGlb) holds in both situations.

Conditions (6.5)-(6.9) are used for determining if t is a read-only transaction
(as.wrSett = ∅). If so, the precondition of dTMS2 requires that ∃n.validIdx (t, n)
For writing transactions (as.wrSett ̸= ∅) the precondition of dTMS2 requires that
rdSett ⊆ last(as.L). Using the final condition of txnR in combination with Condi-
tion (6.2) and the TMCommit annotation at PC2 (see Fig. 6.6) we can obtain that
as.L[intHalf (cs.

−→
glb− cs.recGlb)] = last(as.L) and thus rdSett ⊆ last(as.L).

Finally, the txnR program-counter mapping ensures that as.pct has the correct
value as usual.

In all other cases sc(cs, t, α) = ⊥.

Theorem 6.5.1 ( ). SimR is a forward simulation is a between dTMS2 and dTMLPx86.

6.6 Mechanization Effort

The refinement proof has been fully mechanized in Isabelle-HOL. This mechanization
builds on the Pierogifull framework [24]. The first step focused on demonstrating the
crash invariant of dTMLPx86 (§6.4.1). The second step concerned showing the validity
of the proof outline for dTMLPx86 (Theorem 6.4.1). These steps required approximately
2.5 months of full-time work.

Finally, the third step involved proving that the dTMLPx86 implementation refines the
dTMS2 specification (Theorem 6.5.1). Specifically, we established the simulation relation
for each step of the dTMLPx86 transition system, resulting in a total of 47 sub-proofs.
This last step required approximately 2 months.

As with the development of Pierogi, throughout this work we use the built-in sledge-
hammer tool to enable finding relevant proof rules needed to discharge proof obligations.
The core development of Pierogifull, including semantics, view-based expressions, and
the soundness of proof rules, consists of approximately 10,000 lines of Isabelle/HOL
code. With this foundation in place, the proof of the crash invariant, and the validity of
the proof outline for dTMLPx86 encompass approximately 20,000 lines of Isabelle/HOL
code, including the dTMLPx86 encoding and annotations. The refinement proof consists
of approximately 10.000 lines.
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6.7 Related Work

It is already known that TMS1 [50], which is a weaker condition than opacity [86] is suf-
ficient for contextual refinement under SC [14]; However, the connection between durable
opacity and contextual refinement remains unexplored. This becomes particularly rel-
evant in the case of persistent transactional memory implementations like dTMLPx86,
which are primarily intended for use as libraries. Two key concerns arise in this con-
text. Firstly, it is important to determine the client-side guarantees that are necessary
under weak persistent memory models and to assess whether dTMS2 alone is sufficient
to provide these guarantees. The second concern revolves around establishing verifica-
tion techniques for validating client programs under Px86 (or other relaxed persistency
models).

Relevant work in the context of C11 has been conducted by Dalvandi et al. [42]. The
paper demonstrates that TMS2 is insufficient for providing any client guarantees under
the relaxed memory model of C11. To this end, a more adequate specification has been
proposed, which constitutes an adaptation of TMS2. Furthermore, a logic has been
developed for verifying client programs. In the context of persistent memory, Khyzha
et al. [91] have introduced a correctness criterion that ensures contextual refinement.
However, this criterion overlooks the complexities arising from weak persistency as it as-
sumes the persistent sequential consistency model [90]. A more recent work for verifying
persistent transactional libraries has been developed by Stefanesco et al. [136]. Their
work introduces a declarative framework that offers flexibility for specifying persistent
libraries and facilitates modular verification. The framework addresses implementations
under weak persistency models such as Px86. However, it is not mechanized. We believe
an operational approach may also be beneficial for verifying persistent TM implementa-
tions.
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Chapter 7

Conclusions

Overall, this thesis has addressed several key aspects related to the formalization and
verification of persistent transactional memory algorithms, providing insights into the
challenges and solutions in defining and proving correctness guarantees in a persistent
memory setting. In this thesis, we primarily explore two research questions. The first
question delves into the concept of correctness in persistent transactional memory algo-
rithms: What constitutes correctness in this context, and how can it be precisely defined
and formalized? We start exploring this research topic by reviewing several transactional
memory correctness criteria targeting volatile transactional memory algorithms( §2.3).
We later present a collection of correctness criteria for durable concurrent objects ( §2.4).
Having gained ideas from both research areas, we suggest and formalize durable opac-
ity [23] (§3.1), an adaptation of opacity that accounts for durability and system crashes.

The second question concerns the verification of persistent transactional memory algo-
rithms: What methods can be used to effectively verify these algorithms, and to what
degree are the existing verification techniques, originally designed for volatile transac-
tional memory algorithms, applicable in this new context? We approach the verification
problem gradually, initially building our proofs assuming a simplified memory model,
persistent SC, which does not fully capture the complexities of realistic persistent mem-
ory architectures. However, it provided us with the opportunity to gain an initial insight
into the verification challenges that arise from persistency. Subsequently, we integrate
these proofs into a more complex and realistic model, Px86.

In our initial effort to verify a transactional memory algorithm, we attempt to show
that an adaptation of the TML algorithm to persistent SC, dTMLSC, adheres to durable
opacity [38] (Chapter 3). The proposed verification method comprises two steps. The
initial step involves developing a program invariant for dTMLSC and showing that it
is locally correct and interference-free. This is achieved by applying the Owicki–Gries
method [114] in its classic form. The subsequent step comprises using forward simula-
tion [103,109] and the dTMLSC program invariant to establish a refinement of dTMLSC

with respect to an abstract operational specification that implies durable opacity (called
dTMS2 [23]).

Later on, we try to verify a transactional memory algorithm assuming the more compli-
cated Px86 model. We start this process by establishing a program logic that consists of
assertions that are able to describe the program behaviors induced by the asynchronous
nature of the Px86 weak memory model as well as the state of persistent memory. The
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proposed logic [24] (Chapter 4) leverages two works: Px86view [32], a view-based opera-
tional semantics of x86 persistency and the C11 Owicki–Gries logic [39,42,48] to reason
about view-based operational semantics, which we adapt to Px86view. We initially use
our logic, Pierogi, to verify several litmus tests (Chapter 5). During this process, we
have realized that the local correctness and interference freedom validity requirements of
the Owicki–Gries method are insufficient for asserting the validity of persistent memory
states. To this end, we enhance the Owicki–Gries validity proof outline with an extra
requirement, named persistence, which imposes showing that an invariant that describes
the state of the persistent memory (crash invariant) holds until the program’s initial
crash (Def. 4.2.1).

In our last work, we attempt to apply our logic to verify an adaptation of TML to Px86,
dTMLPx86 (Chapter 6). We have then realized the importance of expressing the crash and
recovery process in an operational way and enabling verification beyond the initial crash
of a program. As a result, we have updated the definition of crash invariant to represent a
set of properties that hold for all the program transitions, including the crash transition
and the algorithm’s recovery process (Def. 4.2.2). The above enables us to enhance
Pierogi with assertions that describe memory patterns that span through pre- and post-
crash program states. We name the enhanced version of our logic Pierogifull(Chapter 4).

The verification process of dTMLPx86 consists of the following steps. We first develop
a program annotation and crash invariant for dTMLPx86 using Pierogifull assertions.
Subsequently, we show that the Owicki–Gries validity proof outline with the updated
requirement of peristence holds. Afterwards, we use the above and the forward simulation
technique to establish a refinement of dTMLPx86 with respect to dTMS2.

All the proofs outlined above have been mechanized in Isabelle/HOL.

In summary, this thesis demonstrates that established verification methods and con-
cepts for volatile memory algorithms, including view-based semantics, the Owicki–Gries
method, and the forward simulation technique for showing refinement, can be used for
verifying persistent memory algorithms. These methods/concepts can be applied either
directly or require minimal modifications, and are proved to be equally effective in this
domain.

7.1 Discussion

In this section, we discuss the difficulties we have encountered throughout the develop-
ment as well as the motivation behind our design and verification decisions.

In Chapter 3, our focus has been on the formalization of durable opacity and the de-
velopment of an example algorithm and verification technique. Durable opacity extends
opacity to address full-system crash events, similar to how durable linearizability [81] ex-
tends the notion of linearizability [73]. While deliberating on the appropriate correctness
condition for our persistent transactional memory implementation, we primarily consid-
ered two other candidates. The first was persistent serializability as defined in [123], and
the second was an adaptation of recoverability [20] for persistent memory. Our version of
persistent recoverability revolves around the idea of persisting the writes of a transaction
only if a subsequent transaction reads at least one of them. Nevertheless, we opted to
design a durable opaque persistent STM implementation primarily because of opacity’s
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strong guarantees. Driven by the potential ramifications of inconsistent reads, which
can result in irrecoverable errors like divide-by-zero exceptions or segmentation faults,
opacity has emerged as a widely preferred option for TM implementations [7,27,65,105].
Opacity mandates that both aborted and live transactions (even if they eventually abort)
must only observe consistent values according to the transactions that have been suc-
cessfully committed thus far. A possible disadvantage of this criterion is that it can lead
to unnecessary aborts.

A relaxed version of durable opacity is buffered durable opacity, which can be defined
in a similar fashion to buffered durable linearizability [81]. Informally, buffered durable
opacity entails persisting only a subhistory pi of each era between two consecutive crashes
(hi) of a concurrent history h. The persisted subhistory must be formed in a way such
that if a transaction tb is included in pi and there exists a transaction ta in hi that
happens before tb (ta ≺hi

tb), then ta is also included in pi. Taking into account proposed
buffered durable linearizable implementations [60,110,145], we expect that implementing
a buffered durable opaque STM will lead to a latency reduction. This expectation is based
on the fact that such an implementation would need fewer explicit persist instructions/
persist barriers since it could resume from previous consistent states instead of eagerly
persisting transactions. An implementation that enables relaxed durability in the context
of persistent hardware transactional memory, allowing a transaction to commit before
becoming persistent, is proposed in [61].

Later on, we focus on designing a durably opaque software transactional memory im-
plementation, dTMLSC. Our point of departure is the transactional mutex lock (TML)
algorithm, presented in [38]. TML is a "lightweight" STM algorithm with minimal stor-
age and instrumentation overheads. As mentioned in [38], TML has the capability to
operate with just one word of global metadata, one word of per-thread metadata (as-
suming the nesting mechanism is disregarded; otherwise, it requires two words), and low
instrumentation per access. While TML features a simple design that promotes low la-
tency, it exhibits a drawback in terms of scalability. It scales effectively only in scenarios
where critical sections rarely involve write operations. Regardless, we think that TML
is a strong candidate for demonstrating persistent STM correctness because, besides its
simplicity, it constitutes a real-world STM implementation.

We then proceeded to demonstrate a correctness proof technique. We begin with con-
structing an operational characterization of durable opacity, dTMS2. dTMS2 is derived
from TMS2 [50] which has already been proven to imply opacity. Adapting TMS2 to
the persistency setting surprisingly only required minimal changes. As a high-level spec-
ification that implies durable opacity, dTMS2 has the potential to be reused in data
refinement proofs for a broader range of algorithms.

Our verification method constitutes showing that dTMLSC refines dTMS2 by establish-
ing the existence of a forward simulation [103, 109]. Our Isabelle/HOL mechanization
is based on the existing TML-TMS2 refinement proof mechanization presented in [44].
Although the modifications to the original proof state were relatively minor, numerous
lemmas required revising and reproving. Given that an opacity proof has already been
developed for an STM implementation, a modularized proof approach might be able to
reduce the mechanization effort. An example proof of this kind is given in [22]. The
demonstrated method separates the proof of durability for memory accesses from the
proof of opacity. Firstly, the persistent STM implementation is encoded exactly as the
original STM implementation but with calls to an external (abstract) library for rele-
gating all memory operations (read/writes). Then, a linearizability proof is established
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between the abstract library (containing a single memory layer) and a concrete library
incorporating both volatile and persistent memory. This proof ensures the durability of
memory accesses. Combining this proof with the existing opacity proof is adequate to
show that the persistent version of the STM implementation is durably opaque.

In Chapter 4, we present an Owicki–Gries program logic for Intel’s x86 persistency and
consistency model (Px86), Pierogi. We based our logic on the view-based operational
semantics by Cho et al. [32]. The expressiveness of these semantics allowed us to de-
fine various assertions that efficiently describe the Px86 state, including an assertion
(persistent view) that describes the values that can be observed for any location of the
persistent memory as well as an assertion (asynchronous view) that captures directly
the effect of Intel’s optimised flush instruction. The chapter presents two versions of
our logic, Pierogisimp and Pierogifull. The key distinction between them lies in the
requirement of persistence for the validity of a proof outline. Pierogisimp expresses
the persistence requirement as an invariant, which is formed only by persistent view
assertions and holds up until the first crash of a program. On the contrary, Pierogifull
expresses the persistence requirement as an invariant which is formed by any view-based
assertion of Pierogifull and holds thought the execution of a program including its crash
and recovery events.

In Chapter 5, we utilize Pierogifull for reasoning about several litmus tests discussed in
previous works by Raad et al. [119, 122]. In this manner, we illustrate how Pierogifull
facilitates the verification and mechanization of programs that were previously unverifi-
able.

Finally, in Chapter 6, we demonstrate the verification of a durably opaque software
transactional memory implementation under Px86. Our TM algorithm, dTMLPx86, is
an adaptation of dTMLSC but with additional synchronization mechanisms to cope with
Px86. While developing dTMLPx86, we considered numerous design alternatives. For
instance, we were considering moving the CAS instruction of line R2, to line Bp. In this
way, a transaction t could have retried loading the most recent value of glb into loct until
it succeeds. This would have allowed the transaction to avoid aborting at a later stage.
However, while this design may have resulted in fewer aborts, it would likely lead to a
considerable increase in overall latency. Another design alternative we were considering
is to have a flush instruction instead of the flushopt ; sfence sequence in Rec4 and
Rec5. We expect the flush instruction in this case to be equally or more efficient than
the current solution.

In the subsequent sections of Chapter 6, we describe the application of the proof tech-
nique presented in Chapter 3 for the dTMLPx86 implementation. Establishing correctness
under the Px86 memory model posed much greater challenges in comparison to assum-
ing the persistent SC model. A modularised approach, such as the adaptation of the
technique demonstrated in [22] to the relaxed setting of Px86, could have potentially
reduced the mechanisation effort.

An interesting remark regarding the correctness proofs of dTMLSC and dTMLPx86 is
that the linearization points differ for the two algorithms. This discrepancy remains
evident even for TM operations (TMBegin, TMCommit) that are nearly identical in both
implementations. The reason for this lies in the design of the dTMS2 specification, which
permits an operation to abort at any point, even after it has linearized. The above allows
for a wider range of options when determining the placement of linearization points.
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7.2 Future Work

Possible extensions of the work presented in this thesis can be classified into five cate-
gories:

1) Formalization of additional correctness conditions for persistent STMs:
An interesting subject for future work would be to formalize buffered durable opac-
ity and other correctness conditions for persistent software transactional memory,
as well as explore their performance implications.e buffered durable opacity and
other correctness conditions for persistent software transactional memory, as well
as explore their performance implications.

2) Implementation and benchmarking: A valuable extension of our work is im-
plementing and benchmarking dTMLPx86 and its variations as well as comparing
its performance with other persistent STM algorithms (e.g. Onefile [125], Romu-
lusLog [37], Trinity [124], and p-orec [150]).

3) Extension of the Px86view logic and application of the outlined method-
ology to other persistent weak memory models: The methodology demon-
strated for developing a view-based Owicki–Gries logic for Px86 can also be applied
to construct a program logic for other weak persistent memory models such as the
PArmv8 model. A good starting point for this could be the PArmv8 view-based
semantics presented in [32]. Moreover, Pierogi is capable of being expanded to in-
corporate reasoning about additional Px86 model features, including non-temporal
writes and read/write operations on various memory types such as uncachable and
write-through. This can be implemented by extending the Cho et al. semantics [32]
to cover the additional features and developing in the same manner additional view-
based expressions that effectively describe the impact of the additional features to
the program state.

4) Development of alternative mechanizations: As demonstrated for a view-
based Owicki–Gries RC11-RAR logic [39], our mechanization can be integrated to
the Nipkow and Nieto’s Owicki–Gries framework [111] in the Isabelle/HOL theo-
rem prover. The Nipkow and Nieto’s framework, initially developed for programs
under the sequentially consistent memory model and later extended to support
the RC11-RAR weak memory model [43], provides a WHILE-language for writing
concurrent programs. It also allows embedding assertions directly into a program
itself. The advantage of this approach is that it allows for the writing of annotated
programs using a more familiar pseudocode syntax. Additionally, Nipkow and Ni-
eto’s framework supports the automatic generation of all standard Owicki–Gries
local-correctness and interference-freedom proof obligations.

5) Exploring the connection between durable opacity and contextual re-
finement: A possible extension of our work is exploring the client-side guarantees
that are required under the Px86 model and implementing/verifying dTMLPx86 as
a library.

148



Bibliography

[1] “Intel 64 and ia-32 architectures software developer’s manual (combined
volumes),” https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf/, 2019.

[2] P. A. Abdulla, M. F. Atig, A. Bouajjani, K. N. Kumar, and P. Saivasan, “Deciding
reachability under persistent x86-tso,” Proceedings of the ACM on Programming
Languages, vol. 5, no. POPL, pp. 1–32, 2021.

[3] K. Abrahamson, “Modal logic of concurrent nondeterministic programs,” in Se-
mantics of Concurrent Computation: Proceedings of the International Symposium,
Evian, France, July 2–4, 1979. Springer, 2005, pp. 21–33.

[4] M. K. Aguilera and S. Frølund, “Strict linearizability and the power of aborting,”
Technical Report HPL-2003-241, 2003.

[5] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal memory:
Definitions, implementation, and programming,” Distributed Computing, vol. 9,
no. 1, pp. 37–49, 1995.

[6] M. Alshboul, P. Ramrakhyani, W. Wang, J. Tuck, and Y. Solihin, “Bbb: Simplify-
ing persistent programming using battery-backed buffers,” in 2021 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2021, pp. 111–124.

[7] A. S. Anand, R. Shyamasundar, and S. Peri, “Opacity proof for capr+ algorithm,”
in Proceedings of the 17th International Conference on Distributed Computing and
Networking, 2016, pp. 1–4.

[8] K. R. Apt, F. S. de Boer, and E. Olderog, Verification of Sequential and Concurrent
Programs, ser. Texts in Computer Science. Springer, 2009.

[9] A. ARM, “Architecture reference manual-armv8, for armv8-a architecture profile,”
ARM Limited, Dec, 2017.

[10] A. Armstrong and B. Dongol, “Modularising opacity verification for hybrid trans-
actional memory,” in FORTE. Springer, 2017, pp. 33–49.

[11] A. Armstrong, B. Dongol, and S. Doherty, “Proving opacity via linearizability: a
sound and complete method,” in FORTE. Springer, 2017, pp. 50–66.

[12] K. Arun, D. Mishra, and B. Panda, “Empirical analysis of architectural primi-
tives for nvram consistency,” in 2021 IEEE 28th International Conference on High
Performance Computing, Data, and Analytics (HiPC). IEEE, 2021, pp. 172–181.

149

 https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf/
 https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf/


[13] H. Attiya, O. Ben-Baruch, and D. Hendler, “Nesting-safe recoverable linearizability:
Modular constructions for non-volatile memory,” in Proceedings of the 2018 ACM
Symposium on Principles of Distributed Computing, 2018, pp. 7–16.

[14] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky, “Safety of live transactions in
transactional memory: Tms is necessary and sufficient,” in Distributed Comput-
ing: 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15,
2014. Proceedings 28. Springer, 2014, pp. 376–390.

[15] H. Avni, E. Levy, and A. Mendelson, “Hardware transactions in nonvolatile mem-
ory,” in Distributed Computing: 29th International Symposium, DISC 2015, Tokyo,
Japan, October 7-9, 2015, Proceedings. Springer, 2015, pp. 617–630.

[16] H. Barringer, “The use of temporal logic in the compositional specification of con-
current systems,” in Temporal logics and their applications, 1987, pp. 53–90.

[17] H. A. Beadle, W. Cai, H. Wen, and M. L. Scott, “Nonblocking persistent software
transactional memory,” in Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2020, pp. 429–430.

[18] O. Ben-Baruch, D. Hendler, and M. Rusanovsky, “Upper and lower bounds on the
space complexity of detectable objects,” in Proceedings of the 39th Symposium on
Principles of Distributed Computing, 2020, pp. 11–20.

[19] N. Ben-David, G. E. Blelloch, M. Friedman, and Y. Wei, “Delay-free concurrency
on faulty persistent memory,” in The 31st ACM Symposium on Parallelism in
Algorithms and Architectures, 2019, pp. 253–264.

[20] P. A. Bernstein, V. Hadzilacos, N. Goodman et al., Concurrency control and re-
covery in database systems. Addison-wesley Reading, 1987, vol. 370.

[21] R. Berryhill, W. Golab, and M. Tripunitara, “Robust shared objects for non-volatile
main memory,” in 19th International Conference on Principles of Distributed Sys-
tems (OPODIS 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[22] E. Bila, J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim, “Mod-
ularising verification of durable opacity,” Logical Methods in Computer Science,
vol. 18, 2022.

[23] E. Bila, S. Doherty, B. Dongol, J. Derrick, G. Schellhorn, and H. Wehrheim,
“Defining and verifying durable opacity: Correctness for persistent software
transactional memory,” in FORTE, ser. Lecture Notes in Computer Science,
A. Gotsman and A. Sokolova, Eds., vol. 12136. Springer, 2020, pp. 39–58.
[Online]. Available: https://doi.org/10.1007/978-3-030-50086-3_3

[24] E. V. Bila, B. Dongol, O. Lahav, A. Raad, and J. Wickerson, “View-based
owicki-gries reasoning for persistent x86-tso,” in ESOP, ser. Lecture Notes in
Computer Science, I. Sergey, Ed., vol. 13240. Springer, 2022, pp. 234–261.
[Online]. Available: https://doi.org/10.1007/978-3-030-99336-8_9

[25] S. Böhme and T. Nipkow, “Sledgehammer: Judgement day,” in Automated Reason-
ing, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19,
2010. Proceedings, ser. LNCS, J. Giesl and R. Hähnle, Eds., vol. 6173. Springer,
2010, pp. 107–121.

150

https://doi.org/10.1007/978-3-030-50086-3_3
https://doi.org/10.1007/978-3-030-99336-8_9


[26] S. Brookes and P. W. O’Hearn, “Concurrent separation logic,” ACM SIGLOG
News, vol. 3, no. 3, pp. 47–65, 2016.

[27] T. Brown and S. Ravi, “On the cost of concurrency in hybrid transactional mem-
ory,” arXiv preprint arXiv:1907.02669, 2019.

[28] T. Chajed, “Verifying a concurrent, crash-safe file system with sequential reason-
ing,” Ph.D. dissertation, Massachusetts Institute of Technology, 2022.

[29] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zeldovich, “Verifying concurrent,
crash-safe systems with perennial,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 243–258.

[30] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari, “Atlas: Leveraging locks for
non-volatile memory consistency,” ACM SIGPLAN Notices, vol. 49, no. 10, pp.
433–452, 2014.

[31] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zeldovich,
“Using crash hoare logic for certifying the fscq file system,” in Proceedings of the
25th Symposium on Operating Systems Principles, 2015, pp. 18–37.

[32] K. Cho, S. H. Lee, A. Raad, and J. Kang, “Revamping hardware persistency mod-
els: view-based and axiomatic persistency models for Intel-x86 and Armv8,” in
PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, Virtual Event, Canada, June 20-25, 2021, S. N.
Freund and E. Yahav, Eds. ACM, 2021, pp. 16–31.

[33] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite
state concurrent system using temporal logic specifications: a practical approach,”
in Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, 1983, pp. 117–126.

[34] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala,
and S. Swanson, “Nv-heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories,” ACM SIGARCH Computer Architecture News,
vol. 39, no. 1, pp. 105–118, 2011.

[35] R. Colvin, S. Doherty, and L. Groves, “Verifying concurrent data structures by
simulation,” Electronic Notes in Theoretical Computer Science, vol. 137, no. 2, pp.
93–110, 2005.

[36] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,
“Better i/o through byte-addressable, persistent memory,” in Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles, 2009, pp. 133–
146.

[37] A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms for per-
sistent transactional memory,” in Proceedings of the 30th on Symposium on Paral-
lelism in Algorithms and Architectures, 2018, pp. 271–282.

[38] L. Dalessandro, D. Dice, M. Scott, N. Shavit, and M. Spear, “Transactional mu-
tex locks,” in Euro-Par 2010-Parallel Processing: 16th International Euro-Par
Conference, Ischia, Italy, August 31-September 3, 2010, Proceedings, Part II 16.
Springer, 2010, pp. 2–13.

151



[39] S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim, “Owicki-gries reasoning
for C11 RAR,” in 34th European Conference on Object-Oriented Programming,
ECOOP 2020, November 15-17, 2020, Berlin, Germany (Virtual Conference), ser.
LIPIcs, R. Hirschfeld and T. Pape, Eds., vol. 166. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 11:1–11:26.

[40] S. Dalvandi, S. Doherty, B. Dongol, and H. Wehrheim, “Owicki-Gries reasoning for
C11 RAR (artifact),” Dagstuhl Artifacts Ser., vol. 6, no. 2, pp. 15:1–15:2, 2020.

[41] S. Dalvandi and B. Dongol, “Implementing and verifying release-acquire
transactional memory in C11,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA2,
pp. 1817–1844, 2022. [Online]. Available: https://doi.org/10.1145/3563352

[42] S. Dalvandi and B. Dongol, “Implementing and verifying release-acquire transac-
tional memory in c11,” Proceedings of the ACM on Programming Languages, vol. 6,
no. OOPSLA2, pp. 1817–1844, 2022.

[43] S. Dalvandi, B. Dongol, S. Doherty, and H. Wehrheim, “Integrating Owicki-Gries
for C11-style memory models into Isabelle/HOL,” Journal of Automated Reasoning,
vol. 66, no. 1, pp. 141–171, 2022.

[44] J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, O. Travkin, and H. Wehrheim,
“Mechanized proofs of opacity: a comparison of two techniques,” Formal Aspects
of Computing, vol. 30, pp. 597–625, 2018.

[45] J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, and H. Wehrheim, “Verifying cor-
rectness of persistent concurrent data structures: a sound and complete method,”
Formal Aspects of Computing, vol. 33, no. 4-5, pp. 547–573, 2021.

[46] J. Derrick, B. Dongol, G. Schellhorn, O. Travkin, and H. Wehrheim, “Verifying
opacity of a transactional mutex lock,” in FM 2015: Formal Methods: 20th Inter-
national Symposium, Oslo, Norway, June 24-26, 2015, Proceedings 20. Springer,
2015, pp. 161–177.

[47] S. Doherty, B. Dongol, J. Derrick, G. Schellhorn, and H. Wehrheim, “Proving
opacity of a pessimistic stm,” in 20th International Conference on Principles of
Distributed Systems (OPODIS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2017.

[48] S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick, “Verifying C11 programs
operationally,” in Proceedings of the 24th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP 2019, Washington, DC, USA,
February 16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
355–365.

[49] S. Doherty, L. Groves, V. Luchangco, and M. Moir, “Formal verification of a prac-
tical lock-free queue algorithm,” in FORTE. Springer, 2004, pp. 97–114.

[50] S. Doherty, L. Groves, V. Luchangco, and M. Moir, “Towards formally specifying
and verifying transactional memory,” Formal Aspects of Computing, vol. 25, pp.
769–799, 2013.

[51] B. Dongol and J. Derrick, “Verifying linearisability: A comparative survey,” ACM
Computing Surveys (CSUR), vol. 48, no. 2, pp. 1–43, 2015.

152

https://doi.org/10.1145/3563352


[52] B. Dongol and J. Derrick, “Verifying linearisability: A comparative survey,”
ACM Comput. Surv., vol. 48, no. 2, pp. 19:1–19:43, 2015. [Online]. Available:
https://doi.org/10.1145/2796550

[53] E. D’Osualdo, A. Raad, and V. Vafeiadis, “The path to durable linearizability,”
Proc. ACM Program. Lang., vol. 7, no. POPL, pp. 748–774, 2023. [Online].
Available: https://doi.org/10.1145/3571219

[54] D. Dziuma, P. Fatourou, and E. Kanellou, “Consistency for transactional memory
computing,” Transactional Memory. Foundations, Algorithms, Tools, and Applica-
tions: COST Action Euro-TM IC1001, pp. 3–31, 2015.

[55] P. Ekemark, Y. Yao, A. Ros, K. Sagonas, and S. Kaxiras, “Tsoper: Efficient
coherence-based strict persistency,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021, pp. 125–138.

[56] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of word-based
software transactional memory,” in Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming, 2008, pp. 237–246.

[57] P. Felber, V. Gramoli, and R. Guerraoui, “Elastic transactions,” in Distributed
Computing: 23rd International Symposium, DISC 2009, Elche, Spain, September
23-25, 2009. Proceedings 23. Springer, 2009, pp. 93–107.

[58] X. Feng, R. Ferreira, and Z. Shao, “On the relationship between concurrent sep-
aration logic and assume-guarantee reasoning,” in ESOP. Springer, 2007, pp.
173–188.

[59] Y. Fridman, Y. Snir, M. Rusanovsky, K. Zvi, H. Levin, D. Hendler, H. Attiya,
and G. Oren, “Assessing the use cases of persistent memory in high-performance
scientific computing,” in 2021 IEEE/ACM 11th Workshop on Fault Tolerance for
HPC at eXtreme Scale (FTXS). IEEE, 2021, pp. 11–20.

[60] M. Friedman, M. Herlihy, V. Marathe, and E. Petrank, “A persistent lock-free queue
for non-volatile memory,” ACM SIGPLAN Notices, vol. 53, no. 1, pp. 28–40, 2018.

[61] E. Giles, K. Doshi, and P. Varman, “Hardware transactional persistent memory,”
in Proceedings of the International Symposium on Memory Systems, 2018, pp. 190–
205.

[62] E. R. Giles, K. Doshi, and P. Varman, “Softwrap: A lightweight framework for
transactional support of storage class memory,” in 2015 31st Symposium on Mass
Storage Systems and Technologies (MSST). IEEE, 2015, pp. 1–14.

[63] G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali, “Single machine graph
analytics on massive datasets using intel optane dc persistent memory,” Proceedings
of the VLDB Endowment, vol. 13, no. 8.

[64] H. Gorjiara, G. H. Xu, and B. Demsky, “Jaaru: Efficiently model checking persis-
tent memory programs,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, 2021,
pp. 415–428.

153

https://doi.org/10.1145/2796550
https://doi.org/10.1145/3571219


[65] J. E. Gottschlich, M. Vachharajani, and J. G. Siek, “An efficient software transac-
tional memory using commit-time invalidation,” in Proceedings of the 8th annual
IEEE/ACM international symposium on Code generation and optimization, 2010,
pp. 101–110.

[66] J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Guan, and H. Chen, “Pisces: A scal-
able and efficient persistent transactional memory.” in USENIX Annual Technical
Conference, 2019, pp. 913–928.

[67] R. Guerraoui and M. Kapalka, “On the correctness of transactional memory,” in
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, 2008, pp. 175–184.

[68] R. Guerraoui and M. Kapałka, “Principles of transactional memory,” Synthesis
Lectures on Distributed Computing, vol. 1, no. 1, pp. 1–193, 2010.

[69] R. Guerraoui and R. R. Levy, “Robust emulations of shared memory in a crash-
recovery model,” in 24th International Conference on Distributed Computing Sys-
tems, 2004. Proceedings. IEEE, 2004, pp. 400–407.

[70] T. Harris, J. Larus, and R. Rajwar, “Transactional memory,” Synthesis Lectures
on Computer Architecture, vol. 5, no. 1, pp. 1–263, 2010.

[71] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit, “A
lazy concurrent list-based set algorithm,” in OPODIS. Springer, 2006, pp. 3–16.

[72] M. Herlihy, “A methodology for implementing highly concurrent data structures,”
in Proceedings of the second ACM SIGPLAN symposium on Principles & practice
of parallel programming, 1990, pp. 197–206.

[73] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for con-
current objects,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 12, no. 3, pp. 463–492, 1990.

[74] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications
of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[75] P. W. Hutto and M. Ahamad, “Slow memory: Weakening consistency to enhance
concurrency in distributed shared memories,” in Proceedings., 10th International
Conference on Distributed Computing Systems. IEEE Computer Society, 1990,
pp. 302–303.

[76] D. Imbs and M. Raynal, “Virtual world consistency: A condition for stm systems
(with a versatile protocol with invisible read operations),” Theoretical Computer
Science, vol. 444, pp. 113–127, 2012.

[77] Intel Corporation, “Persistent Memory Programming,” 2015. [Online]. Available:
https://pmem.io/

[78] Intel Corporation, “Intel 64 and IA-32 Architectures Optimization Reference Man-
ual,” 2021. [Online]. Available: https://software.intel.com/content/dam/develop/
external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf

[79] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory updates
via justdo logging,” ACM SIGARCH Computer Architecture News, vol. 44, no. 2,
pp. 427–442, 2016.

154

https://pmem.io/
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/64-ia-32-architectures-optimization-manual.pdf


[80] J. Izraelevitz, H. Mendes, and M. L. Scott, “Brief announcement: Preserving
happens-before in persistent memory,” in Proceedings of the 28th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, 2016, pp. 157–159.

[81] J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of persistent memory
objects under a full-system-crash failure model,” in International Symposium on
Distributed Computing. Springer, 2016, pp. 313–327.

[82] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh,
Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance measurements of the intel
optane dc persistent memory module,” arXiv preprint arXiv:1903.05714, 2019.

[83] J. Jeong, J. Hong, S. Maeng, C. Jung, and Y. Kwon, “Unbounded hardware trans-
actional memory for a hybrid dram/nvm memory system,” in 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 525–538.

[84] J. Jeong and C. Jung, “Pmem-spec: persistent memory speculation (strict persis-
tency can trump relaxed persistency),” in Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, 2021, pp. 517–529.

[85] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Efficient persist barriers for mul-
ticores,” in Proceedings of the 48th International Symposium on Microarchitecture,
2015, pp. 660–671.

[86] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “Dhtm: Durable hardware trans-
actional memory,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018, pp. 452–465.

[87] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra, “Atom: Atomic durability in
non-volatile memory through hardware logging,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE, 2017, pp.
361–372.

[88] J. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis, “Strong logic for
weak memory: Reasoning about release-acquire consistency in Iris,” in ECOOP,
2017.

[89] J.-O. Kaiser, H.-H. Dang, D. Dreyer, O. Lahav, and V. Vafeiadis, “Strong logic
for weak memory: Reasoning about release-acquire consistency in iris,” in 31st
European Conference on Object-Oriented Programming (ECOOP 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[90] A. Khyzha and O. Lahav, “Taming x86-tso persistency,” Proc. ACM Program.
Lang., vol. 5, no. POPL, pp. 1–29, 2021.

[91] A. Khyzha and O. Lahav, “Abstraction for crash-resilient objects,” in ESOP.
Springer International Publishing Cham, 2022, pp. 262–289.

[92] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-performance
transactions for persistent memories,” in Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems, 2016, pp. 399–411.

155



[93] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, T. F. Wenisch, and S. Computing, “Per-
sistency programming 101,” in Non-Volatile Memories Workshop, 2015.

[94] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and
T. F. Wenisch, “Delegated persist ordering,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[95] R. M. Krishnan, J. Kim, A. Mathew, X. Fu, A. Demeri, C. Min, and S. Kannan,
“Durable transactional memory can scale with timestone,” in Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 335–349.

[96] O. Lahav and V. Vafeiadis, “Owicki-gries reasoning for weak memory models,” in
Automata, Languages, and Programming: 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II 42. Springer, 2015, pp.
311–323.

[97] O. Lahav and V. Vafeiadis, “Owicki-Gries reasoning for weak memory mod-
els,” in Automata, Languages, and Programming, M. M. Halldórsson, K. Iwama,
N. Kobayashi, and B. Speckmann, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2015, pp. 311–323.

[98] L. Lamport, “How to make a multiprocessor computer that correctly executes mul-
tiprocess programs,” IEEE Transactions on Computers c-28, vol. 9, pp. 690–691,
1979.

[99] M. Lesani, V. Luchangco, and M. Moir, “Putting opacity in its place,” in Workshop
on the theory of transactional memory, 2012, pp. 137–151.

[100] N. Li and W. Golab, “Detectable sequential specifications for recoverable shared
objects,” in 35th International Symposium on Distributed Computing (DISC 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[101] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren, “Dudetm:
Building durable transactions with decoupling for persistent memory,” ACM SIG-
PLAN Notices, vol. 52, no. 4, pp. 329–343, 2017.

[102] D. E. Lowell and P. M. Chen, “Free transactions with rio vista,” ACM SIGOPS
Operating Systems Review, vol. 31, no. 5, pp. 92–101, 1997.

[103] N. Lynch and F. Vaandrager, “Forward and backward simulations,” Information
and Computation, vol. 121, no. 2, pp. 214–233, 1995.

[104] N. A. Lynch and M. R. Tuttle, “Hierarchical correctness proofs for distributed
algorithms,” in Proceedings of the sixth annual ACM Symposium on Principles of
distributed computing, 1987, pp. 137–151.

[105] A. Matveev and N. Shavit, “Reduced hardware norec: A safe and scalable hybrid
transactional memory,” ACM SIGPLAN Notices, vol. 50, no. 4, pp. 59–71, 2015.

[106] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan, K. Strauss,
and S. Swanson, “Atomic in-place updates for non-volatile main memories with
kamino-tx,” in Proceedings of the Twelfth European Conference on Computer Sys-
tems, 2017, pp. 499–512.

156



[107] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms,” in Proceedings of the fifteenth annual ACM
symposium on Principles of distributed computing, 1996, pp. 267–275.

[108] A. Mokkedem and D. Méry, “On using temporal logic for refinement and composi-
tional verification of concurrent systems,” Theoretical Computer Science, vol. 140,
no. 1, pp. 95–138, 1995.

[109] O. Müller, “I/o automata and beyond: Temporal logic and abstraction in is-
abelle,” in Theorem Proving in Higher Order Logics: 11th International Conference,
TPHOLs’ 98 Canberra, Australia September 27–October 1, 1998 Proceedings 11.
Springer, 1998, pp. 331–348.

[110] F. Nawab, J. Izraelevitz, T. Kelly, C. B. Morrey III, D. R. Chakrabarti, and M. L.
Scott, “Dalí: A periodically persistent hash map,” in 31st International Symposium
on Distributed Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[111] T. Nipkow and L. P. Nieto, “Owicki/gries in isabelle/hol,” in Fundamental Ap-
proaches to Software Engineering: Second International Conference, FASE’99,
Held as Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS’99, Amsterdam, The Netherlands, March 22-28, 1999. Proceedings
2. Springer, 1999, pp. 188–203.

[112] G. Ntzik, P. da Rocha Pinto, and P. Gardner, “Fault-tolerant resource reasoning,”
in Programming Languages and Systems: 13th Asian Symposium, APLAS 2015,
Pohang, South Korea, November 30-December 2, 2015, Proceedings 13. Springer,
2015, pp. 169–188.

[113] M. A. Olson, K. Bostic, and M. I. Seltzer, “Berkeley db.” in USENIX Annual
Technical Conference, FREENIX Track, 1999, pp. 183–191.

[114] S. Owicki and D. Gries, “An axiomatic proof technique for parallel programs i,”
Acta informatica, vol. 6, no. 4, pp. 319–340, 1976.

[115] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel programs I,”
Acta Informatica, vol. 6, pp. 319–340, 1976.

[116] C. H. Papadimitriou, “The serializability of concurrent database updates,” Journal
of the ACM (JACM), vol. 26, no. 4, pp. 631–653, 1979.

[117] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 265–276, 2014.

[118] A. Raad, M. Doko, L. Rozic, O. Lahav, and V. Vafeiadis, “On library correctness
under weak memory consistency: specifying and verifying concurrent libraries
under declarative consistency models,” Proc. ACM Program. Lang., vol. 3, no.
POPL, pp. 68:1–68:31, 2019. [Online]. Available: https://doi.org/10.1145/3290381

[119] A. Raad, O. Lahav, and V. Vafeiadis, “Persistent Owicki-Gries reasoning: a pro-
gram logic for reasoning about persistent programs on Intel-x86,” Proc. ACM Pro-
gram. Lang., vol. 4, no. OOPSLA, pp. 151:1–151:28, 2020.

157

https://doi.org/10.1145/3290381


[120] A. Raad, L. Maranget, and V. Vafeiadis, “Extending intel-x86 consistency
and persistency: formalising the semantics of intel-x86 memory types and
non-temporal stores,” Proc. ACM Program. Lang., vol. 6, no. POPL, pp. 1–31,
2022. [Online]. Available: https://doi.org/10.1145/3498683

[121] A. Raad and V. Vafeiadis, “Persistence semantics for weak memory: Integrating
epoch persistency with the tso memory model,” POPL, vol. 2, no. OOPSLA, pp.
1–27, 2018.

[122] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis, “Persistency semantics of the
intel-x86 architecture,” Proc. ACM Program. Lang., vol. 4, no. POPL, pp. 11:1–
11:31, 2020.

[123] A. Raad, J. Wickerson, and V. Vafeiadis, “Weak persistency semantics from the
ground up: formalising the persistency semantics of armv8 and transactional
models,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 135:1–135:27,
2019. [Online]. Available: https://doi.org/10.1145/3360561

[124] P. Ramalhete, A. Correia, and P. Felber, “Efficient algorithms for persistent trans-
actional memory,” in Proceedings of the 26th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, 2021, pp. 1–15.

[125] P. Ramalhete, A. Correia, P. Felber, and N. Cohen, “Onefile: A wait-free persistent
transactional memory,” in 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2019, pp. 151–163.

[126] M. Raynal, G. Thia-Kime, and M. Ahamad, “From serializable to causal transac-
tions for collaborative applications,” in EUROMICRO 97. Proceedings of the 23rd
EUROMICRO Conference: New Frontiers of Information Technology (Cat. No.
97TB100167). IEEE, 1997, pp. 314–321.

[127] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “Thynvm: Enabling
software-transparent crash consistency in persistent memory systems,” in Proceed-
ings of the 48th International Symposium on Microarchitecture, 2015, pp. 672–685.

[128] A. M. Rudoff, “Deprecating the pcommit instruction,” https://www.intel.com/
content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.
html/.

[129] S. Scargall, Programming persistent memory: A comprehensive guide for develop-
ers. Springer Nature, 2020.

[130] R. Sears and E. Brewer, “Stasis: Flexible transactional storage,” in Proceedings
of the 7th symposium on Operating systems design and implementation, 2006, pp.
29–44.

[131] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
tso: a rigorous and usable programmer’s model for x86 multiprocessors,”
Commun. ACM, vol. 53, no. 7, pp. 89–97, 2010. [Online]. Available:
https://doi.org/10.1145/1785414.1785443

[132] N. Shavit and D. Touitou, “Software transactional memory,” in PODC, 1995, pp.
204–213.

158

https://doi.org/10.1145/3498683
https://doi.org/10.1145/3360561
 https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html/
 https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html/
 https://www.intel.com/content/www/us/en/developer/articles/technical/deprecate-pcommit-instruction.html/
https://doi.org/10.1145/1785414.1785443


[133] K. Siek and P. T. Wojciechowski, “Atomic rmi: A distributed transactional memory
framework,” International Journal of Parallel Programming, vol. 44, pp. 598–619,
2016.

[134] K. Siek and P. T. Wojciechowski, “Last-use opacity: a strong safety property for
transactional memory with prerelease support,” Distributed Computing, vol. 35,
no. 3, pp. 265–301, 2022.

[135] C. SPARC International, Inc, The SPARC architecture manual: version 8.
Prentice-Hall, Inc., 1992.

[136] L. Stefanesco, A. Raad, and V. Vafeiadis, “Specifying and verifying
persistent libraries,” CoRR, vol. abs/2306.01614, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2306.01614

[137] L. Sun, Y. Lu, and J. Shu, “Dp2: Reducing transaction overhead with differen-
tial and dual persistency in persistent memory,” in Proceedings of the 12th ACM
International Conference on Computing Frontiers, 2015, pp. 1–8.

[138] A. Turon, V. Vafeiadis, and D. Dreyer, “Gps: Navigating weak memory with ghosts,
protocols, and separation,” in Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applications, 2014,
pp. 691–707.

[139] V. Vafeiadis and M. Parkinson, “A marriage of rely/guarantee and separation logic,”
in CONCUR 2007–Concurrency Theory: 18th International Conference, CONCUR
2007, Lisbon, Portugal, September 3-8, 2007. Proceedings 18. Springer, 2007, pp.
256–271.

[140] S. F. Vindum and L. Birkedal, “Spirea: A mechanized concurrent separation logic
for weak persistent memory,” 2022.

[141] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent mem-
ory,” ACM SIGARCH Computer Architecture News, vol. 39, no. 1, pp. 91–104,
2011.

[142] Z. Wang, H. Yi, R. Liu, M. Dong, and H. Chen, “Persistent transactional memory,”
IEEE Computer Architecture Letters, vol. 14, no. 1, pp. 58–61, 2014.

[143] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao, “Characterizing
and modeling non-volatile memory systems,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 496–
508.

[144] Y. Wei, N. Ben-David, M. Friedman, G. E. Blelloch, and E. Petrank, “Flit: a
library for simple and efficient persistent algorithms,” in Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2022, pp. 309–321.

[145] H. Wen, W. Cai, M. Du, L. Jenkins, B. Valpey, and M. L. Scott, “A fast, general
system for buffered persistent data structures,” in 50th International Conference
on Parallel Processing, 2021, pp. 1–11.

159

https://doi.org/10.48550/arXiv.2306.01614


[146] D. Wright, M. Batty, and B. Dongol, “Owicki-gries reasoning for c11 programs
with relaxed dependencies,” in Formal Methods: 24th International Symposium,
FM 2021, Virtual Event, November 20–26, 2021, Proceedings. Springer, 2021, pp.
237–254.

[147] L. Xiang, X. Zhao, J. Rao, S. Jiang, and H. Jiang, “Characterizing the performance
of intel optane persistent memory: A close look at its on-dimm buffering,” in
Proceedings of the Seventeenth European Conference on Computer Systems, 2022,
pp. 488–505.

[148] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An empirical
guide to the behavior and use of scalable persistent memory.” in FAST, vol. 20,
2020, pp. 169–182.

[149] V. Yashina, “Intel® optane™ persistent memory – memory mode de-
cision guide,” https://www.intel.com/content/www/us/en/developer/articles/
guide/intel-optane-persistent-memory-decision-guide.html/.

[150] P. Zardoshti, T. Zhou, Y. Liu, and M. Spear, “Optimizing persistent memory trans-
actions,” in 2019 28th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT). IEEE, 2019, pp. 219–231.

160

 https://www.intel.com/content/www/us/en/developer/articles/guide/intel-optane-persistent-memory-decision-guide.html /
 https://www.intel.com/content/www/us/en/developer/articles/guide/intel-optane-persistent-memory-decision-guide.html /

