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ETAPS Foreword

Welcome to the 23rd ETAPS! ETAPS 2020 was originally planned to take place in
Ireland in its beautiful capital Dublin. Because of the Covid-19 pandemic, this was
changed to an online event on July 2, 2020.

ETAPS 2020 is the 23rd instance of the European Joint Conferences on Theory and
Practice of Software.

ETAPS is an annual federated conference established in 1998, and consists of four
conferences: ESOP, FASE, FoSSaCS, and TACAS.

Each conference has its own Program Committee (PC) and its own Steering
Committee (SC).

The conferences cover various aspects of software systems, ranging from theoretical
computer science to foundations of programming language developments, analysis
tools, and formal approaches to software engineering.

Organizing these conferences in a coherent, highly synchronized conference pro-
gramme, enables researchers to participate in an exciting event, having the possibility
to meet many colleagues working in different directions in the field, and to easily attend
talks of different conferences.

On the weekend before the main conference, numerous satellite workshops take
place that attract many researchers from all over the globe. Also, for the second time, an
ETAPS Mentoring Workshop is organized.

This workshop is intended to help students early in the program with advice on
research, career, and life in the fields of computing that are covered by the ETAPS
conference.

ETAPS 2020 received 424 submissions in total, 129 of which were accepted,
yielding an overall acceptance rate of 30.4%.

I thank all the authors for their interest in ETAPS, all the reviewers for their
reviewing efforts, the PC members for their contributions, and in particular the PC (co-)
chairs for their hard work in running this entire intensive process.

Last but not least, my congratulations to all authors of the accepted papers!

Because of the change to an online event, most of the original ETAPS program had
to be cancelled. The ETAPS afternoon featured presentations of the three best paper
awards, the Test-of-Time award and the ETAPS PhD award. The invited and tutorial
speakers of ETAPS 2020 will be invited for ETAPS 2021, and all authors of accepted
ETAPS 2020 papers will have the opportunity to present their work at ETAPS 2021.

ETAPS 2020 originally was supposed to place in Dublin, Ireland, organized by the
University of Limerick and Lero. The local organization team consisted of Tiziana
Margaria (UL and Lero, general chair), Vasileios Koutavas (Lero@UCD), Anila Mjeda
(Lero@UL), Anthony Ventresque (Lero@UCD), and Petros Stratis (Easy Confer-
ences). I would like to thank Tiziana and her team for all the preparations, and we hope
there will be a next opportunity to host ETAPS in Dublin.

ETAPS 2020 is further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
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EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST.

The Executive Board consists of Holger Hermanns (Saarbriicken), Marieke
Huisman (Twente, chair), Joost-Pieter Katoen (Aachen and Twente), Jan Kofron
(Prague), Gerald Liittgen (Bamberg), Tarmo Uustalu (Reykjavik and Tallinn), Caterina
Urban (INRIA), and Lenore Zuck (Chicago).

Other members of the steering committee are:

Armin Biere (Linz)

Jordi Cabot (Barcelona)

Jean Goubault-Larrecq (Cachan)

Jan-Friso Groote (Eindhoven)

Esther Guerra (Madrid)

Jurriaan Hage (Utrecht)

Reiko Heckel (Leicester)

Panagiotis Katsaros (Thessaloniki)

Stefan Kiefer (Oxford)

Barbara Konig (Duisburg)

Fabrice Kordon (Paris)

Jan Kretinsky (Munich)

Kim G. Larsen (Aalborg)

Tiziana Margaria (Limerick)

Peter Miiller (Zurich)

Catuscia Palamidessi (Palaiseau)

Dave Parker (Birmingham)

Andrew M. Pitts (Cambridge)

Peter Ryan (Luxembourg)

Don Sannella (Edinburgh)

Bernhard Steffen (Dortmund)

Mariélle Stoelinga (Twente)

Gabriele Taentzer (Marburg)

Christine Tasson (Paris)

Peter Thiemann (Freiburg)

Jan Vitek (Prague)

Heike Wehrheim (Paderborn)

Anton Wijs (Eindhoven), and

Nobuko Yoshida (London)

I’d like to take this opportunity to thank all authors, attendants, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support.

I hope you all enjoyed the ETAPS 2020 afternoon.

July 2020 Marieke Huisman
ETAPS SC Chair
ETAPS e.V. President



Preface

This volume contains the papers accepted for the 23rd International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS). The con-
ference series is dedicated to foundational research with a clear significance for soft-
ware science. It brings together research on theories and methods to support the
analysis, integration, synthesis, transformation, and verification of programs and
software systems.

This volume contains 31 contributed papers selected from 98 full paper submis-
sions, and also a paper accompanying an invited talk by Scott Smolka (Stony Brook
University, USA). Each submission was reviewed by at least three Program Committee
members, with the help of external reviewers, and the final decisions took into account
the feedback from a rebuttal phase. The conference submissions were managed using
the EasyChair conference system, which was also used to assist with the compilation
of these proceedings.

We wish to thank all the authors who submitted papers to FoSSaCS 2020, the
Program Committee members, the Steering Committee members, the external
reviewers and the ETAPS 2020 organizers. To our great regret ETAPS 2020 in Dublin
had to be cancelled due to the Covid-19 pandemic, but we hope to be able to listen to
the authors’ talks in the near future.

July 2020 Jean Goubault-Larrecq
Barbara Konig
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Neural Flocking: MPC-based Supervised
Learning of Flocking Controllers

(=1)Usama Mehmood®, Shouvik Roy!, Radu Grosu?, Scott A. Smolka!,
Scott D. Stoller!, and Ashish Tiwari®

L Stony Brook University, Stony Brook NY, USA
umehmood@cs . stonybrook.edu
2 Technische Universitat Wien, Wien, Austria
3 Microsoft Research, San Francisco CA, USA

Abstract. We show how a symmetric and fully distributed flocking con-
troller can be synthesized using Deep Learning from a centralized flocking
controller. Our approach is based on Supervised Learning, with the cen-
tralized controller providing the training data, in the form of trajectories
of state-action pairs. We use Model Predictive Control (MPC) for the cen-
tralized controller, an approach that we have successfully demonstrated
on flocking problems. MPC-based flocking controllers are high-performing
but also computationally expensive. By learning a symmetric and dis-
tributed neural flocking controller from a centralized MPC-based one,
we achieve the best of both worlds: the neural controllers have high
performance (on par with the MPC controllers) and high efficiency. Our
experimental results demonstrate the sophisticated nature of the dis-
tributed controllers we learn. In particular, the neural controllers are
capable of achieving myriad flocking-oriented control objectives, includ-
ing flocking formation, collision avoidance, obstacle avoidance, predator
avoidance, and target seeking. Moreover, they generalize the behavior
seen in the training data to achieve these objectives in a significantly
broader range of scenarios. In terms of verification of our neural flock-
ing controller, we use a form of statistical model checking to compute
confidence intervals for its convergence rate and time to convergence.

Keywords: Flocking - Model Predictive Control - Distributed Neural Controller
- Deep Neural Network - Supervised Learning

1 Introduction

With the introduction of Reynolds rule-based model [16,17], it is now possible
to understand the flocking problem as one of distributed control. Specifically, in
this model, at each time-step, each agent executes a control law given in terms
of the weighted sum of three competing forces to determine its next acceleration.
Each of these forces has its own rule: separation (keep a safe distance away
from your neighbors), cohesion (move towards the centroid of your neighbors),
and alignment (steer toward the average heading of your neighbors). Reynolds

© The Author(s) 2020
J. Goubault-Larrecq and B. Koénig (Eds.): FOSSACS 2020, LNCS 12077, pp. 1-16, 2020.
https://doi.org/10.1007/978-3-030-45231-5_1
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controller is distributed; i.e., it is executed separately by each agent, using
information about only itself and nearby agents, and without communication.
Furthermore, it is symmetric; i.e., every agent runs the same controller (same
code).

We subsequently showed that a simpler, more declarative approach to the
flocking problem is possible [11]. In this setting, flocking is achieved when the
agents combine to minimize a system-wide cost function. We presented centralized
and distributed solutions for achieving this form of “declarative flocking” (DF),
both of which were formulated in terms of Model-Predictive Control (MPC) [2].

Another advantage of DF over the ruled-based approach exemplified by
Reynolds model is that it allows one to consider additional control objectives
(e.g., obstacle and predator avoidance) simply by extending the cost function
with additional terms for these objectives. Moreover, these additional terms are
typically quite straightforward in nature. In contrast, deriving behavioral rules
that achieve the new control objectives can be a much more challenging task.

An issue with MPC is that computing the next control action can be compu-
tationally expensive, as MPC searches for an action sequence that minimizes the
cost function over a given prediction horizon. This renders MPC unsuitable for
real-time applications with short control periods, for which flocking is a prime
example. Another potential problem with MPC-based approaches to flocking is
its performance (in terms of achieving the desired flight formation), which may
suffer in a fully distributed setting.

In this paper, we present Neural Flocking (NF), a new approach to the
flocking problem that uses Supervised Learning to learn a symmetric and fully
distributed flocking controller from a centralized MPC-based controller. By doing
so, we achieve the best of both worlds: high performance (on par with the MPC
controllers) in terms of meeting flocking flight-formation objectives, and high
efficiency leading to real-time flight controllers. Moreover, our NF controllers can
easily be parallelized on hardware accelerators such as GPUs and TPUs.

Figure 1 gives an overview of the NF approach. A high-performing centralized
MPC controller provides the labeled training data to the learning agent: a
symmetric and distributed neural controller in the form of a deep neural network
(DNN). The training data consists of trajectories of state-action pairs, where a
state contains the information known to an agent at a time step (e.g., its own
position and velocity, and the position and velocity of its neighbors), and the
action (the label) is the acceleration assigned to that agent at that time step by
the centralized MPC controller.

We formulate and evaluate NF in a number of essential flocking scenarios:
basic flocking with inter-agent collision avoidance, as in [11], and more advanced



Neural Flocking: MPC-based Supervised Learning of Flocking Controllers 3

scenarios with additional objectives, including obstacle avoidance, predator avoid-
ance, and target seeking by the flock. We conduct an extensive performance
evaluation of NF. Our experimental results demonstrate the sophisticated nature
of NF controllers. In particular, they are capable of achieving all of the stated
control objectives. Moreover, they generalize the behavior seen in the training
data in order to achieve these objectives in a significantly broader range of scenar-
ios. In terms of verification of our neural controller, we use a form of statistical
model checking [5,10] to compute confidence intervals for its rate of convergence
to a flock and for its time to convergence.

2 Background

We consider a set of n dynamic agents A = {1,...,n} that move according to
the following discrete-time equations of motion:

<

pi(k+1) = pi(k) +dt-vi(k), |vi(k)| < (1)

Ul(k—Fl) :Ui(k)—th'ai(k‘), \az(k)| <a
where p;(k) € R?, v;(k) € R?, a;(k) € R? are the position, velocity and accelera-
tion of agent i € A respectively at time step k, and dt € R* is the time step. The
magnitudes of velocities and accelerations are bounded by v and a, respectively.
Acceleration a; (k) is the control input for agent i at time step k. The acceleration
is updated after every n time steps i.e., n - dt is the control period. The flock
configuration at time step k is thus given by the following vectors (in boldface):

p(k) = [pi (k) - py (K)]" (2)
v(k) = [vf (k) - vy (0] (3)
a(k) = [af (k) - - - ag (k)] (4)

The configuration vectors are referred to without the time indexing as p,
v, and a. The neighborhood of agent i at time step k, denoted by N;(k) C A,
contains its N -nearest neighbors, i.e., the N other agents closest to it. We use
this definition (in Section 2.2 to define a distributed-flocking cost function) for
simplicity, and expect that a radius-based definition of neighborhood would lead
to similar results for our distributed flocking controllers.

2.1 Model-Predictive Control

Model-Predictive control (MPC) [2] is a well-known control technique that has
recently been applied to the flocking problem [11,19,20]. At each control step,
an optimization problem is solved to find the optimal sequence of control actions
(agent accelerations in our case) that minimizes a given cost function with respect
to a predictive model of the system. The first control action of the optimal control
sequence is then applied to the system; the rest is discarded. In the computation
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of the cost function, the predictive model is evaluated for a finite prediction
horizon of T' control steps.

MPC-based flocking models can be categorized as centralized or distributed. A
centralized model assumes that complete information about the flock is available
to a single “global” controller, which uses the states of all agents to compute
their next optimal accelerations. The following optimization problem is solved by
a centralized MPC controller at each control step k:

T-1

min J(R)+ X Jlalk+t | k)| (5)

a(klk),...,a(k+T—1|k) < a —

The first term J(k) is the centralized model-specific cost, evaluated for T' control
steps (this embodies the predictive aspect of MPC), starting at time step k. It
encodes the control objective of minimizing the cost function J(k). The second
term, scaled by a weight A > 0, penalizes large control inputs: a(k +t | k) are
the predictions made at time step k for the accelerations at time step k + .

In distributed MPC, each agent computes its acceleration based only on its
own state and its local knowledge, e.g., information about its neighbors:

T-1
i : . ) t 2
ST LT Ji(k) + A ;Haz(kﬂL ol (6)

Ji(k) is the distributed, model-specific cost function for agent ¢, analogous to J(k).
In a distributed setting where an agent’s knowledge of its neighbors’ behavior
is limited, an agent cannot calculate the exact future behavior of its neighbors.
Hence, the predictive aspect of J;(k) must rely on some assumption about
that behavior during the prediction horizon. Our distributed cost functions are
based on the assumption that the neighbors have zero accelerations during the
prediction horizon. While this simple design is clearly not completely accurate,
our experiments show that it still achieves good results.

2.2 Declarative Flocking

Declarative flocking (DF) is a high-level approach to designing flocking algorithms
based on defining a suitable cost function for MPC [11]. This is in contrast to the
operational approach, where a set of rules are used to capture flocking behavior,
as in Reynolds model. For basic flocking, the DF cost function contains two terms:
(1) a cohesion term based on the squared distance between each pair of agents in
the flock; and (2) a separation term based on the inverse of the squared distance
between each pair of agents. The flock evolves toward a configuration in which
these two opposing forces are balanced. The cost function J for centralized DF,
i.e., centralized MPC (CMPC), is as follows:

J (p) = A (A=) |A\ Z > lpisll? + ws - i ””2 (7)

€A jeA i<
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where w; is the weight of the separation term and controls the density of the flock.
The cost function is normalized by the number of pairs of agents, W;
as such, the cost does not depend on the size of the flock. The control law for
CMPC is given by Eq. (5), with J(k) = Y1, JC (p(k + ¢ | k).

The basic flocking cost function for distributed DF is similar to that for
CMPC, except that the cost function J for agent i is computed over its set of

neighbors N; (k) at time k:

PEE) = Y Il e Y o)

|12
RG] & Tl

The control law for agent 7 is given by Eq. (6), with J; (k) = Zt IR (p(k+t | k)).

3 Additional Control Objectives

The cost functions for basic flocking given in Eqs. (7) and (8) are designed to
ensure that in the steady state, the agents are well-separated. Additional goals
such as obstacle avoidance, predator avoidance, and target seeking are added
to the MPC formulation as weighted cost-function terms. Different objectives
can be combined by including the corresponding terms in the cost function as a
weighted sum.

Cost-Function Term for Obstacle Avoidance. We consider multiple rectangular
obstacles which are distributed randomly in the field. For a set of m rectangular
obstacles O = {04, 0s,...,0,,}, we define the cost function term for obstacle

avoidance as:
Joa(p,0) |AHO| ZZ (9)
ieA jeO le 0( ‘

J
where o is the set of points on the obstacle boundaries and oy) is the point on

the obstacle boundary of the j'* obstacle O; that is closest to the i‘" agent.

Cost-Function Term for Target Seeking. This term is the average of the squared
distance between the agents and the target. Let g denote the position of the fixed
target. Then the target-seeking term is as defined as

: |
Jrs(P) = 71 lep gll? (10)

i€A

Cost-Function Term for Predator Avoidance. We introduce a single predator,
which is more agile than the flocking agents: its maximum speed and acceleration
are a factor of f,, greater than v and a, respectively, with f, > 1. Apart from
being more agile, the predator has the same dynamics as the agents, given by
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Eq. (1). The control law for the predator consists of a single term that causes it
to move toward the centroid of the flock with maximum acceleration.

For a flock of n agents and one predator, the cost-function term for predator
avoidance is the average of the inverse of the cube of the distances between the
predator and the agents. It is given by:

JPA (p ppred Z (11)
|‘A‘ ieA sz ppred”

where ppreq is the position of the predator. In contrast to the separation term
in Egs. (5)-(6), which we designed to ensure inter-agent collision avoidance, the
predator-avoidance term has a cube instead of a square in the denominator. This
is to reduce the influence of the predator on the flock when the predator is far
away from the flock.

NF Cost-Function Terms. The MPC cost functions used in our examination of
Neural Flocking are weighted sums of the cost function terms introduced above.
We refer to the first term of our centralized DF cost function J¢(p) (see Eq. (7))
as Jeones(p) and the second as Jsep(p). We use the following cost functions Ji,
Jo, and J3 for basic flocking with collision avoidance, obstacle avoidance with
target seeking, and predator avoidance, respectively.

Jl (p) = Jcohes (p) + ws - Jsep(p) (12&)
JQ(p; 0) - Jcohes(p) + ws - Jsep(p) + Wwp - JOA(P, O) + wy - JTS(p) (12b)
JB(pvppred) = Jcohes(p) + ws - J. ep(p) + Wp - JPA(p7ppred) (12C)

where wy is the weight of the separation term, w, is the weight of the obstacle
avoidance term, w; is the weight of the target-seeking term, and wy, is the weight
of the predator-avoidance term. Note that J; is equivalent to J¢ (Eq. (7)). The
weight w, of the separation term is experimentally chosen to ensure that the
distance between agents, throughout the simulation, is at least d,,;,, the minimum
inter-agent distance representing collision avoidance. Similar considerations were
given to the choice of values for w, and w,. The specific values we used for the
weights are: ws = 2000, w, = 1500, w; = 10, and w,, = 500.

We experimented with an alternative strategy for introducing inter-agent
collision avoidance, obstacle avoidance, and predator avoidance into the MPC
problem, namely, as constraints of the form dpin — pij < 0, dmin — ||pi —
ogz)H < 0, and dymin — ||pi — Ppredl| < 0, respectively. Using the theory of exact
penalty functions [12], we recast the constrained MPC problem as an equivalent
unconstrained MPC problem by converting the constraints into a weighted
penalty term, which is then added to the MPC cost function. This approach
rendered the optimization problem difficult to solve due to the non-smoothness
of the penalty term. As a result, constraint violations in the form of collisions
were observed during simulation.
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4 Neural Flocking

We learn a distributed neural controller (DNC) for the flocking problem using
training data in the form of trajectories of state-action pairs produced by a CMPC
controller. In addition to basic flocking with inter-agent collision avoidance, the
DNC exhibits a number of other flocking-related behaviors, including obstacle
avoidance, target seeking, and predator avoidance. We also show how the learned
behavior exhibited by the DNC generalizes over a larger number of agents than
what was used during training to achieve successful collision-free flocking in
significantly larger flocks.

We use Supervised Learning to train the DNC. Supervised Learning learns a
function that maps an input to an output based on example sequences of input-
output pairs. In our case, the trajectory data obtained from CMPC contains both
the training inputs and corresponding labels (outputs): the state of an agent in
the flock (and that of its nearest neighbors) at a particular time step is the input,
and that agent’s acceleration at the same time step is the label.

4.1 Training Distributed Flocking Controllers

We use Deep Learning to synthesize a distributed and symmetric neural controller
from the training data provided by the CMPC controller. Our objective is to learn
basic flocking, obstacle avoidance with target seeking, and predator avoidance.
Their respective CMPC-based cost functions are given in Sections 2.2 and 3. All
of these control objectives implicitly also include inter-agent collision avoidance
by virtue of the separation term in Eq. 7.

For each of these control objectives, DNC training data is obtained from
CMPC trajectory data generated for n = 15 agents, starting from initial con-
figurations in which agent positions and velocities are uniformly sampled from
[—15,15]% and [0, 1]2, respectively. All training trajectories are 1,000 time steps
in duration.

We further ensure that the initial configurations are recoverable; i.e., no two
agents are so close to each other that they cannot avoid a collision by resorting
to maximal accelerations. We learn a single DNC from the state-action pairs of
all n agents. This yields a symmetric distributed controller, which we use for
each agent in the flock during evaluation.

Basic Flocking. Trajectory data for basic flocking is generated using the cost
function given in Eq. (7). We generate 200 trajectories, each of which (as noted
above) is 1,000 time steps long. The input to the NN is the position and velocity
of each agent along with the positions and velocities of its N-nearest neighbors.
This yields 200 - 1,000 - 15 = 3M total training samples.

Let us refer to the agent (the DNC) being learned as Ap. Since we use
neighborhood size A = 14, the input to the NN is of the form [p{ p§ v§ v pt p¥
of o} Lopty pYy vi,v],], where pE, pg are the position coordinates and v, v
velocity coordinates for agent Ag, and p{ 4, pY 1, and vf 44, v¥ ,, are the
position and velocity vectors of its neighbors. Since this input vector has 60
components, the input to the NN consists of 60 features.
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(a) Basic flocking  (b) Obstacle avoid. (c) Predator avoid.  (d) Target seeking

Fig. 2: Snapshots of DNC flocking behaviors for 30 agents

Obstacle Avoidance with Target Seeking. For obstacle avoidance with target
seeking, we use CMPC with the cost function given in Eq. (12b). The target is
located beyond the obstacles, forcing the agents to move through the obstacle
field. For the training data, we generate 100 trajectories over 4 different obstacle
fields (25 trajectories per obstacle field). The input to the NN consists of the 92
features [pf pg v& v§ of of ... piy Py viy VY, 0F4 014 g% gY], where o, of is the
closest point on any obstacle to agent Ao; 0of 1, , 0y 14 give the closest point on
any obstacle for the 14 neighboring agents, and g*, ¢V is the target location.

Predator Avoidance. The CMPC cost function for predator avoidance is given in
Eq. (12¢). The position, velocity, and the acceleration of the predator are denoted
by Ppreds Vpreds Gpred, respectively. We take f, = 1.40; hence vp,cq = 1.400 and
Gpreqa = 1.40a. The input features to the NN are the positions and velocities
of agent Ay and its A-nearest neighbors, and the position and velocity of the
predator. The input with 64 features thus has the form [p§ pg v vf ... piy pi,

x .Y x Y T Y
V14 V14 ppred pp'red vpred Upred}‘

5 Experimental Evaluation

This section contains the results of our extensive performance analysis of the
distributed neural flocking controller (DNC), taking into account various control
objectives: basic flocking with collision avoidance, obstacle avoidance with target
seeking, and predator avoidance. As illustrated in Fig. 1, this involves running
CMPC to generate the training data for the DNCs, whose performance we then
compare to that of the DMPC and CMPC controllers. We also show that the
DNC flocking controllers generalize the behavior seen in the training data to
achieve successful collision-free flocking in flocks significantly larger in size than
those used during training. Finally, we use Statistical Model Checking to obtain
confidence intervals for DNC’s correctness/performance.

5.1 Preliminaries

The CMPC and DMPC control problems defined in Section 2.1 are solved using
MATLAB fmincon optimizer. In the training phase, the size of the flock is
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n = 15. For obstacle-avoidance with target-seeking, we use 5 obstacles with the
target located at [60,50]. The simulation time is 100, dt =0.1 time units, and
1 = 3, where (recall) n - dt is the control period. Further, the agent velocity and
acceleration bounds are v =2.0 and a=1.5.

We use dyi, = 1.5 as the minimum inter-agent distance for collision avoidance,
d%s =1 as the minimum agent-obstacle distance for obstacle avoidance, and
d’"¢* = 1.5 as the minimum agent-predator distance for predator avoidance. For
initial configurations, recall that agent positions and velocities are uniformly
sampled from [—15,15]? and [0, 1]2, respectively, and we ensure that they are
recoverable; i.e., no two agents are so close to each other that they cannot avoid
a collision when resorting to maximal accelerations. The predator starts at rest
from a fixed location at a distance of 40 from the flock center.

For training, we considered 15 agents and 200 trajectories per agent, each
trajectory 1,000 time steps in length. This yielded a total of 3,000,000 training
samples. Our neural controller is a fully connected feed-forward Deep Neural
Network (DNN), with 5 hidden layers, 84 neurons per hidden layer, and with a
ReLU activation function. We use an iterative approach for choosing the DNN
hyperparameters and architecture where we continuously improve our NN, until
we observe satisfactory performance by the DNC.

For training the DNNs, we use Keras [3], which is a high-level neural network
APIT written in Python and capable of running on top of TensorFlow. To generate
the NN model, Keras uses the Adam optimizer [8] with the following settings:
Ir=10"2, 81 =0.9, B2=0.999, e=10"%. The batch size (number of samples
processed before the model is updated) is 2,000, and the number of epochs
(number of complete passes through the training dataset) used for training is
1,000. For measuring training loss, we use the mean-squared error metric.

For basic flocking, DNN input vectors have 60 features and the number
of trainable DNN parameters is 33,854. For flocking with obstacle-avoidance
and target-seeking, input vectors have 92 features and the number of trainable
parameters is 36,542. Finally, for flocking with predator-avoidance, input vectors
have 64 features and the resulting number of trainable DNN parameters is 34,190.

To test the trained DNC, we generated 100 simulations (runs) for each of the
desired control objectives: basic flocking with collision avoidance, flocking with
obstacle avoidance and target seeking, and flocking with predator avoidance. The
results presented in Tables 1, were obtained using the same number of agents and
obstacles and the same predator as in the training phase. We also ran tests that
show DNC controllers can achieve collision-free flocking with obstacle avoidance
where the numbers of agents and obstacles are greater than those used during
training.

5.2 Results for Basic Flocking

We use flock diameter, inter-agent collision count and velocity convergence [20] as
performance metrics for flocking behavior. At any time step, the flock diameter
D(p) = max(; jyea ||pij| is the largest distance between any two agents in the
flock. We calculate the average converged diameter by averaging the flock diameter
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Fig. 3: Performance comparison for basic flocking with collision avoidance, aver-
aged over 100 test runs.

in the final time step of the simulation over the 100 runs. An inter-agent collision
(IC) occurs when the distance between two agents at any point in time is less than
dpmin. The 1IC rate (ICR) is the average number of ICs per test-trajectory time-
step. The velocity convergence VC(v) = (1/n) (ZieA loi = (32— vj)/n||2) is
the average of the squared magnitude of the discrepancy between the velocities of
agents and the flock’s average velocity. For all the metrics, lower values are better,
indicating a denser and more coherent flock with fewer collisions. A successful
flocking controller should also ensure that values of D(p) and VC(v) eventually
stabilize.

Fig. 3 and Table 1 compare the performance of the DNC on the basic-flocking
problem for 15 agents to that of the MPC controllers. Although the DMPC and
CMPC outperform the DNC, the difference is marginal. An important advantage
of the DNC over DMPC is that they are much faster. Executing a DNC controller
requires a modest number of arithmetic operations, whereas executing an MPC
controller requires simulation of a model and controller over the prediction horizon.
In our experiments, on average, the CMPC takes 1209 msec of CPU time for the
entire flock and DMPC takes 58 msec of CPU time per agent, whereas the DNC
takes only 1.6 msec.

Table 1: Performance comparison for BF with 15 agents on 100 test runs
Avg. Conv. Diameter ICR  Velocity Convergence

DNC 14.13 0 0.15
DMPC 13.67 0 0.11
CMPC 13.84 0 0.10
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Table 2: DNC Performance Generalization for BF
Agents Avg. Conv. Conv. Avg. Conv. ICR

Diameter  Rate (%) Time
15 14.13 100 52.15 0
20 16.45 97 58.76 0
25 19.81 94 64.11 0
30 23.24 92 72.08 0
35 30.57 86 83.84 0.008
40 38.66 81 95.32 0.019

5.3 Results for Obstacle and Predator Avoidance

For obstacle and predator avoidance, collision rates are used as a performance
metric. An obstacle-agent collision (OC) occurs when the distance between an
agent and the closest point on any obstacle is less than d°%¢ . A predator-agent
collision (PC) occurs when the distance between an agent and the predator is less
than d”7¢. The OC rate (OCR) is the average number of OCs per test-trajectory
time-step, and the PC rate (PCR) is defined similarly. Our test results show
that the DNC, along with the DMPC and CMPC, is collision-free (i.e., each
of ICR, OCR, and PCR is zero) for 15 agents, with the exception of DMPC
for predator avoidance where PCR = 0.013. We also observed that the flock

successfully reaches the target location in all 100 test runs.

5.4 DNC Generalization Results

Tables 2-3 present DNC generalization results for basic flocking (BF), obstacle
avoidance (OA), and predator avoidance (PA), with the number of agents ranging
from 15 (the flock size during training) to 40. In all of these experiments, we use
a neighborhood size of A/ = 14, the same as during training. Each controller was
evaluated with 100 test runs. The performance metrics in Table 2 are the average
converged diameter, convergence rate, average convergence time, and ICR.

The convergence rate is the fraction of successful flocks over 100 runs. The
collection of agents is said to have converged to a flock (with collision avoidance)
if the value of the global cost function is less than the convergence threshold.
We use a convergence threshold of J;(p) < 150, which was chosen based on its
proximity to the value achieved by CMPC. We use the cost function from Eq. 12a
to calculate our success rate because we are showing convergence rate for basic
flocking. The average convergence time is the time when the global cost function
first drops below the success threshold and remains below it for the rest of the
run, averaged over all 100 runs. Even with a local neighborhood of size 14, the
results demonstrate that the DNC can successfully generalize to a large number
of agents for all of our control objectives.
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Table 3: DNC Generalization Performance for OA and PA

OA PA
Agents ICR OCR ICR PCR
15 0 0 0 0
20 0 0 0 0
25 0 0 0 0
30 0 0 0 0

35 0.011 0.009 0.013 0.010
40 0.021 0.018 0.029 0.023

5.5 Statistical Model Checking Results

We use Monte Carlo (MC) approximation as a form of Statistical Model Check-
ing [5,10] to compute confidence intervals for the DNC’s convergence rate to a
flock with collision avoidance and for the (normalized) convergence time. The
convergence rate is the fraction of successful flocks over N runs. The collection
of agent is said to have converged to a successful flock with collision avoidance
if the global cost function J;(p) < 150, where J;(p) is cost function for basic
flocking defined in Eq. 12a.

The main idea of MC is to use N random variables, Z1, ..., Zy, also called
samples, IID distributed according to a random variable Z with mean pz, and to
take the sum iy = (Z1 + ...+ Zn)/N as the value approximating the mean py.
Since an exact computation of py is almost always intractable, an MC approach
is used to compute an (e, §)-approximation of this quantity.

Additive Approximation [6] is an (e, )-approximation scheme where the mean
pnz of an RV Z is approximated with absolute error € and probability 1 — ¢:

Pripz —e<jz<uz+e>1-94 (13)

where [iz is an approximation of pz. An important issue is to determine the
number of samples N needed to ensure that fiz is an (e, d)-approximation of pz. If
Z is a Bernoulli variable expected to be large, one can use the Chernoff-Hoeffding
instantiation of the Bernstein inequality and take N to be N = 41In(2/§)/€,
as in [6]. This results in the additive approzimation algorithm [5], defined in
Algorithm 1.

We use this algorithm to obtain a joint (e,d)-approximation of the mean
convergence rate and mean normalized convergence time for the DNC. Each
sample Z; is based on the result of an execution obtained by simulating the
system starting from a random initial state, and we take Z = (B, R), where B
is a Boolean variable indicating whether the agents converged to a flock during
the execution, and R is a real value denoting the normalized convergence time.
The normalized convergence time is the time when the global cost function first
drops below the convergence threshold and remains below it for the rest of the
run, measured as a fraction of the total duration of the run. The assumptions
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Algorithm 1: Additive Approximation Algorithm

Input: (¢, ) withO<e<land 0<d< 1
Input: Random variables Z;, IID
Output: iz approximation of pz
N = 41n(2/5)/e?;
for (i=0; i < N; i++) do

L S=S5+7;

1z = S/N; return jiz;

Table 4: SMC results for DNC convergence rate and normalized convergence
time; € = 0.01, 6 = 0.0001
Agents ncr ot

15 0.99 0.53
20 0.97 0.58
25 0.94 0.65
30 0.91 0.71
35 0.86 0.84
40 0.80 0.95

about Z required for validity of the additive approximation hold, because RV B
is a Bernoulli variable, the convergence rate is expected to be large (i.e., closer
to 1 than to 0), and the proportionality constraint of the Bernstein inequality is
also satisfied for RV R.

In these experiments, the initial configurations are sampled from the same
distributions as in Section 5.1, and we set ¢ = 0.01 and § = 0.0001, to obtain N =
396,140. We perform the required set of N simulations for 15, 20, 25, 30, 35 and
40 agents. Table 4 presents the results, specifically, the (e, §)-approximations ficr
and ficr of the mean convergence rate and the mean normalized convergence
time, respectively. While the results for the convergence rate are (as expected) nu-
merically similar to the results in Table 2, the results in Table 4 are much stronger,
because they come with the guarantee that they are (e, §)-approximations of the
actual mean values.

6 Related Work

In [18], a flocking controller is synthesized using multi-agent reinforcement learning
(MARL) and natural evolution strategies (NES). The target model from which
the system learns is Reynolds flocking model [16]. For training purposes, a list
of metrics called entropy are chosen, which provide a measure of the collective
behavior displayed by the target model. As the authors of [18] observe, this
technique does not quite work: although it consistently leads to agents forming
recognizable patterns during simulation, agents self-organized into a cluster
instead of flowing like a flock.
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In [9], reinforcement learning and flocking control are combined for the
purpose of predator avoidance, where the learning module determines safe spaces
in which the flock can navigate to avoid predators. Their approach to predator
avoidance, however, isn’t distributed as it requires a majority consensus by the
flock to determine its action to avoid predators. They also impose an a-lattice
structure [13] on the flock. In contrast, our approach is geometry-agnostic and
achieves predator avoidance in a distributed manner.

In [7], an uncertainty-aware reinforcement learning algorithm is developed
to estimate the probability of a mobile robot colliding with an obstacle in an
unknown environment. Their approach is based on bootstrap neural networks
using dropouts, allowing it to process raw sensory inputs. Similarly, a learning-
based approach to robot navigation and obstacle avoidance is presented in [14].
They train a model that maps sensor inputs and the target position to motion
commands generated by the ROS [15] navigation package. Our work in contrast
considers obstacle avoidance (and other control objectives) in a multi-agent
flocking scenario under the simplifying assumption of full state observation.

In [4], an approach based on Bayesian inference is proposed that allows an
agent in a heterogeneous multi-agent environment to estimate the navigation
model and goal of each of its neighbors. It then uses this information to compute
a plan that minimizes inter-agent collisions while allowing the agent to reach its
goal. Flocking formation is not considered.

7 Conclusions

With the introduction of Neural Flocking (NF), we have shown how machine
learning in the form of Supervised Learning can bring many benefits to the
flocking problem. As our experimental evaluation confirms, the symmetric and
fully distributed neural controllers we derive in this manner are capable of
achieving a multitude of flocking-oriented objectives, including flocking formation,
inter-agent collision avoidance, obstacle avoidance, predator avoidance, and target
seeking. Moreover, NF controllers exhibit real-time performance and generalize
the behavior seen in the training data to achieve these objectives in a significantly
broader range of scenarios.

Ongoing work aims to determine whether a DNC can perform as well as
the centralized MPC controller for agent models that are significantly more
realistic than our current point-based model. For this purpose, we are using
transfer learning to train a DNC that can achieve acceptable performance on
realistic quadrotor dynamics [1], starting from our current point-model-based
DNC. This effort also involves extending our current DNC from 2-dimensional
to 3-dimensional spatial coordinates. If successful, and preliminary results are
encouraging, this line of research will demonstrate that DNCs are capable of
achieving flocking with complex realistic dynamics.

For future work, we plan to investigate a distance-based notion of agent neigh-
borhood as opposed to our current nearest-neighbors formulation. Furthermore,
motivated by the quadrotor study of [21], we will seek to combine MPC with
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reinforcement learning in the framework of guided policy search as an alternative
solution technique for the NF problem.
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Abstract This paper studies fundamental questions concerning category-
theoretic models of induction and recursion. We are concerned with
the relationship between well-founded and recursive coalgebras for an
endofunctor. For monomorphism preserving endofunctors on complete
and well-powered categories every coalgebra has a well-founded part,
and we provide a new, shorter proof that this is the coreflection in
the category of all well-founded coalgebras. We present a new more
general proof of Taylor’s General Recursion Theorem that every well-
founded coalgebra is recursive, and we study conditions which imply the
converse. In addition, we present a new equivalent characterization of
well-foundedness: a coalgebra is well-founded iff it admits a coalgebra-to-
algebra morphism to the initial algebra.

Keywords: Well-founded - Recursive - Coalgebra - Initial Algebra -
General Recursion Theorem

1 Introduction

What is induction? What is recursion? In areas of theoretical computer science,
the most common answers are related to initial algebras. Indeed, the dominant
trend in abstract data types is initial algebra semantics (see e.g. [19]), and this
approach has spread to other semantically-inclined areas of the subject. The
approach in broad slogans is that, for an endofunctor F' describing the type of
algebraic operations of interest, the initial algebra pF has the property that
for every F-algebra A, there is a unique homomorphism pF — A, and this is
recursion. Perhaps the primary example is recursion on IN, the natural numbers.
Recall that IN is the initial algebra for the set functor FX = X + 1. If A is any
set, and a € A and a: A — A+ 1 are given, then initiality tells us that there is
a unique f: IN — A such that for all n € IN,

f0)=a  fln+1)=a(f(n). (L.1)
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Then the first additional problem coming with this approach is that of how to
“recognize” initial algebras: Given an algebra, how do we really know if it is
initial? The answer — again in slogans — is that initial algebras are the ones with
“no junk and no confusion.”

Although initiality captures some important aspects of recursion, it cannot be
a fully satisfactory approach. One big missing piece concerns recursive definitions
based on well-founded relations. For example, the whole study of termination
of rewriting systems depends on well-orders, the primary example of recursion
on a well-founded order. Let (X, R) be a well-founded relation, i.e. one with no
infinite sequences - - - zo Rx1 R xo. Let A be any set, and let a: A — A. (Here
and below, & is the power set functor, taking a set to the set of its subsets.)
Then there is a unique f: X — A such that for all x € X,

f@) =a{f(y) :y R x}). (1.2)

The main goal of this paper is the study of concepts that allow one to extend
the algebraic spirit behind initiality in (1.1) to the setting of recursion arising
from well-foundedness as we find it in (1.2). The corresponding concepts are
those of well-founded and recursive coalgebras for an endofunctor, which first
appear in work by Osius [22] and Taylor [23,24], respectively. In his work on
categorical set theory, Osius [22] first studied the notions of well-founded and
recursive coalgebras (for the power-set functor on sets and, more generally, the
power-object functor on an elementary topos). He defined recursive coalgebras
as those coalgebras a: A — A which have a unique coalgebra-to-algebra
homomorphism into every algebra (see Definition 3.2).

Taylor [23,24] took Osius’ ideas much further. He introduced well-founded
coalgebras for a general endofunctor, capturing the notion of a well-founded rela-
tion categorically, and considered recursive coalgebras under the name ‘coalgebras
obeying the recursion scheme’. He then proved the General Recursion Theorem
that all well-founded coalgebras are recursive, for every endofunctor on sets (and
on more general categories) preserving inverse images. Recursive coalgebras were
also investigated by Eppendahl [12], who called them algebra-initial coalgebras.
Capretta, Uustalu, and Vene [10] further studied recursive coalgebras, and they
showed how to construct new ones from given ones by using comonads. They
also explained nicely how recursive coalgebras allow for the semantic treatment
of (functional) divide-and-conquer programs. More recently, Jeannin et al. [15]
proved the General Recursion Theorem for polynomial functors on the category
of many-sorted sets; they also provide many interesting examples of recursive
coalgebras arising in programming.

Our contributions in this paper are as follows. We start by recalling some pre-
liminaries in Section 2 and the definition of (parametrically) recursive coalgebras
in Section 3 and of well-founded coalgebras in Section 4 (using a formulation
based on Jacobs’ next time operator [14], which we extend from Kripke poly-
nomial set functors to arbitrary functors). We show that every coalgebra for a
monomorphism preserving functor on a complete and well-powered category has
a well-founded part, and provide a new proof that this is the coreflection in the
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category of well-founded coalgebras (Proposition 4.19), shortening our previous
proof [6]. Next we provide a new proof of Taylor’s General Recursion Theorem
(Theorem 5.1), generalizing this to endofunctors preserving monomorphisms on a
complete and well-powered category having smooth monomorphisms (see Defini-
tion 2.8). For the category of sets, this implies that “well-founded = recursive”
holds for all endofunctors, strengthening Taylor’s result. We then discuss the
converse: is every recursive coalgebra well-founded? Here the assumption that F'
preserves inverse images cannot be lifted, and one needs additional assumptions.
In fact, we present two results: one assumes universally smooth monomorph-
isms and that the functor has a pre-fixed point (see Theorem 5.5). Under these
assumptions we also give a new equivalent characterization of recursiveness
and well-foundedness: a coalgebra is recursive if it has a coalgebra-to-algebra
morphism into the initial algebra (which exists under our assumptions), see Co-
rollary 5.6. This characterization was previously established for finitary functors
on sets [3]. The other converse of the above implication is due to Taylor using
the concept of a subobject classifier (Theorem 5.8). It implies that ‘recursive’
and ‘well-founded’ are equivalent concepts for all set functors preserving inverse
images. We also prove that a similar result holds for the category of vector spaces
over a fixed field (Theorem 5.12).

Finally, we show in Section 6 that well-founded coalgebras are closed under
coproducts, quotients and, assuming mild assumptions, under subcoalgebras.

2 Preliminaries

We start by recalling some background material. Except for the definitions of
algebra and coalgebra in Subsection 2.1, the subsections below may be read as
needed. We assume that readers are familiar with notions of basic category theory;
see e.g. [2] for everything which we do not detail. We indicate monomorphisms
by writing — and strong epimorphisms by —.

2.1 Algebras and Coalgebras. We are concerned throughout this paper
with algebras and coalgebras for an endofunctor. This means that we have an
underlying category, usually written o7; frequently it is the category of sets or
of vector spaces over a fixed field, and that a functor F': &/ — & is given. An
F-algebra is a pair (4, «), where a: FA — A. An F-coalgebra is a pair (A, a),
where a: A — FA. We usually drop the functor F. Given two algebras (A, «)
and (B, ), an algebra homomorphism from the first to the second is h: A — B
in o/ such that h-a = §- Fh. Similarly, a coalgebra homomorphism satisfies
B +-h = Fh-a. We denote by Coalg F' the category of all coalgebras for F.

Example 2.1. (1) The power set functor &2: Set — Set takes a set X to the set
P X of all subsets of it; for a morphism f: X =Y, Zf: X — ZY takes a
subset S C X to its direct image f[S]. Coalgebras a: X — X may be identified
with directed graphs on the set X of vertices, and the coalgebra structure «
describes the edges: b € a(a) means that there is an edge a — b in the graph.
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(2) Let X be a signature, i.e. a set of operation symbols, each with a finite arity.
The polynomial functor H s associated to X assigns to a set X the set

HsX = ]_[ Yo% X",
nelN

where X, is the set of operation symbols of arity n. This may be identified with
the set of all terms o(x1,...,x,), for 0 € X, and z1,...,z, € X. Algebras for
Hy are the usual Y-algebras.

(3) Deterministic automata over an input alphabet X are coalgebras for the
functor FX = {0,1} x X*. Indeed, given a set S of states, a next-state map
S x X — S may be curried to 6: S — S¥. The set of final states yields the
acceptance predicate a: S — {0,1}. So an automaton may be regarded as a
coalgebra (a,8): S — {0,1} x S¥.

(4) Labelled transitions systems are coalgebras for FX = Z(X x X).

(5) To describe linear weighted automata, i.e. weighted automata over the input
alphabet X with weights in a field K, as coalgebras, one works with the category
Veck of vector spaces over K. A linear weighted automaton is then a coalgebra
for FX = K x X*.

2.2 Preservation Properties. Recall that an intersection of two subobjects
s;:8;— A (i=1,2) of a given object A is given by their pullback. Analogously,
(general) intersections are given by wide pullbacks. Furthermore, the inverse
image of a subobject s: S — B under a morphism f: A — B is the subobject
t: T — A obtained by a pullback of s along f.

All of the ‘usual’” set functors preserve intersections and inverse images:

Example 2.2. (1) Every polynomial functor preserves intersections and inverse
images.
(2) The power-set functor & preserves intersections and inverse images.

(3) Intersection-preserving set functors are closed under taking coproducts,
products and composition. Similarly, for inverse images.

(4) Consider next the set functor R defined by RX = {(z,y) € X x X:z #
y} + {d} for sets X. For a function f: X — Y put Rf(z,y) = (f(z), f(y)) if
f(z) # f(y), and d otherwise. R preserves intersections but not inverse images.

Proposition 2.3 [27]. For every set functor F there exists an essentially unique
set functor F which coincides with F on nonempty sets and functions and
preserves finite intersections (whence monomorphisms).

Remark 2.4. (1) In fact, Trnkova gave a construction of F: she defined F{) as
the set of all natural transformations Cy; — F', where Cy; is the set functor with
Co10 = 0 and Cyp1 X = 1 for all nonempty sets X. For the empty map e: ) — X
with X # (), Fe maps a natural transformation 7: Cy; — F to the element given
by 7x:1— FX.

(2) The above functor F is called the Trnkovd hull of F. It allows us to achieve
preservation of intersections for all finitary set functors. Intuitively, a functor on
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sets is finitary if its behavior is completely determined by its action on finite sets
and functions. For a general functor, this intuition is captured by requiring that
the functor preserves filtered colimits [8]. For a set functor F' this is equivalent to
being finitely bounded, which is the following condition: for each element z € F'X
there exists a finite subset M C X such that x € Fi[FM], where i: M — X is
the inclusion map [7, Rem. 3.14].

Proposition 2.5 [4, p. 66]. The Trnkovd hull of a finitary set functor preserves
all intersections.

2.3 Factorizations. Recall that an epimorphism e: A — B is called strong
if it satisfies the following diagonal fill-in property: given a monomorphism
m: C »— D and morphisms f: A — C and g: B — D such that m- f =g-e
then there exists a unique d: B — C such that f =d-e and g =m - d.

Every complete and well-powered category has factorizations of morphisms:
every morphism f may be written as f = m - e, where e is a strong epimorphism
and m is a monomorphism [9, Prop. 4.4.3]. We call the subobject m the image
of f. It follows from a result in Kurz’ thesis [16, Prop. 1.3.6] that factorizations
of morphisms lift to coalgebras:

Proposition 2.6 (Coalg F' inherits factorizations from ). Suppose that
F preserves monomorphisms. Then the category Coalg F' has factorizations of
homomorphisms f as f =m - e, where e is carried by a strong epimorphism and
m by a monomorphism in 7. The diagonal fill-in property holds in Coalg F.

Remark 2.7. By a subcoalgebra of a coalgebra (A, «) we mean a subobject
in Coalg F' represented by a homomorphism m: (B, ) — (A,«a), where m is
monic in 7. Similarly, by a strong quotient of a coalgebra (A, «) we mean one
represented by a homomorphism e: (A4, «) — (C,v) with e strongly epic in 7.

2.4 Chains. By a transfinite chain in a category &/ we understand a functor
from the ordered class Ord of all ordinals into .«Z. Moreover, for an ordinal \, a
A-chain in <7 is a functor from A to /. A category has colimits of chains if for
every ordinal A it has a colimit of every A-chain. This includes the initial object
0 (the case A = 0).

Definition 2.8. (1) A category &/ has smooth monomorphisms if for every
A-chain C' of monomorphisms a colimit exists, its colimit cocone is formed
by monomorphisms, and for every cone of C formed by monomorphisms, the
factorizing morphism from colim C' is monic. In particuar, every morphism from
0 is monic.

(2) o has universally smooth monomorphisms if < also has pullbacks, and
for every morphism f: X — colim C, the functor &/ colimC — &/ /X forming
pullbacks along f preserves the colimit of C'. This implies that initial object 0
is strict, i.e. every morphism f: X — 0 is an isomorphism. Indeed, consider the
empty chain (A = 0).

Example 2.9. (1) Set has universally smooth monomorphisms.
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(2) Veck has smooth monomorphisms, but not universally so because the initial
object is not strict.

(3) Categories in which colimits of chains and pullbacks are formed “set-like”
have universally smooth monomorphisms. These include the categories of posets,
graphs, topological spaces, presheaf categories, and many varieties, such as
monoids, groups, and unary algebras.

(4) Every locally finitely presentable category ./ with a strict initial object (see
Remark 2.12(1)) has smooth monomorphisms. This follows from [8, Prop. 1.62].
Moreover, since pullbacks commute with colimits of chains, it is easy to prove
that colimits of chains are universal using the strictness of 0.

(5) The category CPO of complete partial orders does not have smooth mono-
morphisms. Indeed, consider the w-chain of linearly ordered sets A,, = {0,...,n}+
{T} (T atop element) with inclusion maps A4,, — A, 1. Its colimit is the linearly
ordered set N+ {T, T’} of natural numbers with two added top elements T" < T.
For the sub-cpo IN+ {T}, the inclusions of A,, are monic and form a cocone. But
the unique factorizing morphism from the colimit is not monic.

Notation 2.10. For every object A we denote by Sub(A) the poset of all subob-
jects of A (represented by monomorphisms s: S — A), where s < s’ if there exists
1 with s = s’ - 4. If & has pullbacks we have, for every morphism f: A — B, the
inverse image operator, viz. the monotone map f : Sub(B) — Sub(A) assigning
to a subobject s: S — A the subobject of B obtained by forming the inverse
image of s under f, i.e. the pullback of s along f.

<_
Lemma 2.11. If o/ is complete and well-powered, then f has a left adjoint
given by the (direct) image operator f : Sub(A) — Sub(B). It maps a subobject
t: T — B to the subobject of A given by the image of [ -t; in symbols we have

T <sift<fis).

Remark 2.12. If &/ is a complete and well-powered category, then Sub(A) is a
complete lattice. Now suppose that &7 has smooth monomorphisms.

(1) In this setting, the unique morphism L 4: 0 — A is a monomorphism and
therefore is the bottom element of the poset Sub(A).

(2) Furthermore, a join of a chain in Sub(A) is obtained by forming a colimit, in
the obvious way.

(3) If o has universalbé_ smooth monomorphisms, then for every morphism
f:+ A— B, the operator f: Sub(B) — Sub(A) preserves unions of chains.

Remark 2.13. Recall [1] that every endofunctor F' yields the initial-algebra
chain, viz. a transfinite chain formed by the objects F0 of o7, as follows: F°0 = 0,
the initial object; F**10 = F(F0), and for a limit ordinal 7 we take the colimit
of the chain (F70),<;. The connecting morphisms w; ;: F*0 — F70 are defined
by a similar transfinite recursion.
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3 Recursive Coalgebras

Assumption 3.1. We work with a standard set theory (e.g. Zermelo-Fraenkel),
assuming the Axiom of Choice. In particular, we use transfinite induction on
several occasions. (We are not concerned with constructive foundations in this
paper.)

Throughout this paper we assume that ./ is a complete and well-powered
category 7 and that F': &/ — &/ preserves monomorphisms.

For o = Set the condition that F' preserves monomorphisms may be dropped.
In fact, preservation of non-empty monomorphism is sufficient in general (for a
suitable notion of non-empty monomorphism) [21, Lemma 2.5], and this holds
for every set functor.

The following definition of recursive coalgebras was first given by Osius [22].
Taylor [24] speaks of coalgebras obeying the recursion scheme. Capretta et al. [10]
extended the concept to parametrically recursive coalgebra by dualizing completely
iterative algebras [20].

Definition 3.2. A coalgebra a: A — F'A is called recursive if for every algebra
e: FX — X there exists a unique coalgebra-to-algebra morphism ef: 4 — X,
i.e. a unique morphism such that the square on the left below commutes:

T 1
A € X €

A X
Gl T@ <047A>l FefxA Te

FA Py px FAx A T4 px A

(4, «) is called parametrically recursive if for every morphism e: FX x A — X
there is a unique morphism ef: A — X such that the square on the right above
commutes.

Example 3.3. (1) A graph regarded as a coalgebra for & is recursive iff it has
no infinite path. This is an immediate consequence of the General Recursion
Theorem (see Corollary 5.6 and Example 4.5(2)).

(2) Let ¢: F(uF) — pF be an initial algebra. By Lambek’s Lemma, ¢ is an
isomorphism. So we have a coalgebra (~1: uF — F(uF). This algebra is (para-
metrically) recursive. By [20, Thm. 2.8], in dual form, this is precisely the same
as the terminal parametrically recursive coalgebra (see also [10, Prop. 7]).

(3) The initial coalgebra 0 — F0 is recursive.

(4) If (C,~) is recursive so is (F'C, Fy), see [10, Prop. 6].

(5) Colimits of recursive coalgebras in Coalg F' are recursive. This is easy to
prove, using that colimits of coalgebras are formed on the level of the underlying
category.

(6) It follows from items (3)—(5) that in the initial-algebra chain from Re-
mark 2.13 all coalgebras w; ;11: F'0 — F'10, i € Ord, are recursive.
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(7) Every parametrically recursive coalgebra is recursive. (To see this, form for
a given e: FX — X the morphism e = ¢ -7, where 7: F'X x A — FX is the
projection.) In Corollaries 5.6 and 5.9 we will see that the converse often holds.

Here is an example where the converse fails [3]. Let R: Set — Set be the
functor defined in Example 2.2(4). Also, let C = {0,1}, and define v: C — RC
by v(0) = ~(1) = (0,1). Then (C,~) is a recursive coalgebra. Indeed, for every
algebra ov: RA — A the constant map h: C' — A with h(0) = h(1) = a(d) is the
unique coalgebra-to-algebra morphism.

However, (C,~) is not parametrically recursive. To see this, consider any

morphism e: RX x {0,1} — X such that RX contains more than one pair
(zo,21), ®o # x1 with e((zg,21),1) = z; for i = 0, 1. Then each such pair yields
h: C — X with h(i) = z; making the appropriate square commutative. Thus,
(C,~) is not parametrically recursive.
(8) Capretta et al. [11] showed that recursivity semantically models divide-and-
conquer programs, as demonstrated by the example of Quicksort. For every
linearly ordered set A (of data elements), Quicksort is usually defined as the
recursive function ¢: A* — A* given by

qle) =¢ and q(aw) = q(w<q) * (ag(wsq)),

where A* is the set of all lists on A, ¢ is the empty list, x is the concatenation of
lists and w<, denotes the list of those elements of w which are less than or equal
than a; analogously for ws,.

Now consider the functor FX =1+ A x X x X on Set, where 1 = {e}, and
form the coalgebra s: A* — 14+ A x A* x A* given by

s(e) = and s(aw) = (@, W<q, Wsq) fora € Aand we A",

We shall see that this coalgebra is recursive in Example 5.3. Thus, for the
F-algebram : 1+ A x A* x A* — A* given by

m(e) =¢ and m(a,w,v) = w* (av)

there exists a unique function g on A* such that ¢ = m - Fig - s. Notice that the
last equation reflects the idea that Quicksort is a divide-and-conquer algorithm.
The coalgebra structure s divides a list into two parts w<, and w~,. Then Fgq
sorts these two smaller lists, and finally in the combine- (or conquer-) step, the
algebra structure m merges the two sorted parts to obtain the desired whole
sorted list.

Jeannin et al. [15, Sec. 4] provide a number of recursive functions arising in
programming that are determined by recursivity of a coalgebra, e.g. the ged of
integers, the Ackermann function, and the Towers of Hanoi.

4 The Next Time Operator and Well-Founded Coalgebras

As we have mentioned in the Introduction, the main issue of this paper is the
relationship between two concepts pertaining to coalgebras: recursiveness and
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well-foundedness. The concept of well-foundedness is well-known for directed
graphs (G, —): it means that there are no infinite directed paths go — g1 — - - -.
For a set X with a relation R, well-foundedness means that there are no backwards
sequences - - - Rxo Rx1 R xg, i.e. the converse of the relation is well-founded as a
graph. Taylor [24, Def. 6.2.3] gave a more general category theoretic formulation
of well-foundedness. We observe here that his definition can be presented in a
compact way, by using an operator that generalizes the way one thinks of the
semantics of the ‘next time’ operator of temporal logics for non-deterministic (or
even probabilistic) automata and transitions systems. It is also strongly related
to the algebraic semantics of modal logic, where one passes from a graph G
to a function on ZG. Jacobs [14] defined and studied the ‘next time’ operator
on coalgebras for Kripke polynomial set functors. This can be generalized to
arbitrary functors as follows.
Recall that Sub(A) denotes the complete lattice of subobjects of A.

Definition 4.1 [4, Def. 8.9]. Every coalgebra a: A — FA induces an endo-
function on Sub(A), called the next time operator

O: Sub(A) = Sub(4),  O(s) = @ (Fs) for s € Sub(A).

In more detail: we define (s and «(s) by the pullback in (4.1). (Being a pullback
is indicated by the “corner” symbol.) In words, O o(s)

assigns to each subobject s: S — A the inverse image OS — FS

of F's under a. Since F's is a monomorphism, (s is a OSI - IFS (4.1)
monomorphism and «(s) is (for every representation

(Os of that subobject of A) uniquely determined. A——FA

Example 4.2. (1) Let A be a graph, considered as a coalgebra for &2: Set — Set.
If S C A is a set of vertices, then ()S is the set of vertices all of whose successors
belong to S.

(2) For the set functor FX = Z(X x X) expressing labelled transition systems
the operator O for a coalgebra a: A — (X x A) is the semantic counterpart
of the next time operator of classical linear temporal logic, see e.g. Manna and
Putieli [18]. In fact, for a subset S < A we have that (S consists of those states
all of whose next states lie in .S, in symbols:

OS={z€ Al (s,y) € a(z) implies y € S, for all s € X}.
The next time operator allows a compact definition of well-foundedness as
characterized by Taylor [24, Exercise VI.17] (see also [6, Corollary 2.19]):

Definition 4.3. A coalgebra is well-founded if id 4 is the only fixed point of its
next time operator.

Remark 4.4. (1) Let us call a subcoalgebra m: (B,f5) — (A,«) cartesian
provided that the square (4.2) is a pullback. Then

(A, «) is well-founded iff it has no proper cartesian B . rB
subcoalgebra. That is, if m: (B,8) — (A,«a) is a _ (4.2)

. . . . m Fm .
cartesian subcoalgebra, then m is an isomorphism. I I

Indeed, the fixed points of next time are precisely the A3 FA
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cartesian subcoalgebras.

(2) A coalgebra is well-founded iff O has a unique pre-fixed point Om < m.
Indeed, since Sub(A) is a complete lattice, the least fixed point of a monotone
map is its least pre-fixed point. Taylor’s definition [24, Def. 6.3.2] uses that
property: he calls a coalgebra well-founded iff () has no proper subobject as a
pre-fixed point.

Example 4.5. (1) Consider a graph as a coalgebra a: A — Z A for the power-
set functor (see Example 2.1). A subcoalgebra is a subset m: B — A such
that with every vertex v it contains all neighbors of v. The coalgebra structure
B: B — ZB is then the domain-codomain restriction of «. To say that B is a
cartesian subcoalgebra means that whenever a vertex of A has all neighbors in
B, it also lies in B. It follows that (A, «) is well-founded iff it has no infinite
directed path, see [24, Example 6.3.3].

(2) If uF exists, then as a coalgebra it is well-founded. Indeed, in every pull-
back (4.2), since 1 =1 (as «) is invertible, so is 3. The unique algebra homomorph-
ism from puF to the algebra 3~': FB — B is clearly inverse to m.

(3) If a set functor F fulfils F() = (), then the only well-founded coalgebra is the
empty one. Indeed, this follows from the fact that the empty coalgebra is a fixed
point of (). For example, a deterministic automaton over the input alphabet X,
as a coalgebra for FX = {0,1} x X* is well-founded iff it is empty.

(4) A non-deterministic automaton may be considered as a coalgebra for the set
functor FX = {0,1} x (£X)¥. It is well-founded iff the state transition graph
is well-founded (i.e. has no infinite path). This follows from Corollary 4.10 below.
(5) A linear weighted automaton, i.e. a coalgebra for FX = K x X* on Vecg,
is well-founded iff every path in its state transition graph eventually leads to O.
This means that every path starting in a given state leads to the state 0 after
finitely many steps (where it stays).

Notation 4.6. Given a set functor F, we define for every set X the map
Tx: FX — X assigning to every element © € FX the intersection of all
subsets m: M — X such that z lies in the image of F'm:

Tx(x) = ﬂ{m | m: M — X satisfies x € Fm[FM]}. (4.3)

Recall that a functor preserves intersections if it preserves (wide) pullbacks
of families of monomorphisms.

Gumm [13, Thm. 7.3] observed that for a set functor preserving intersections,
the maps 7x: FX — 22X in (4.3) form a “subnatural” transformation from F'
to the power-set functor &2. Subnaturality means that (although these maps do
not form a natural transformation in general) for every monomorphism i: X — Y
we have a commutative square:

FX 25 72X
| [ (44)
FY 2 Y
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Remark 4.7. As shown in [13, Thm. 7.4] and [23, Prop. 7.5], a set functor F’
preserves intersections iff the squares in (4.4) above are pullbacks. Moreover,
loc. cit. and [13, Thm. 8.1] prove that 7: F' — £ is a natural transformation,
provided F' preserves inverse images and intersections.

Definition 4.8. Let F' be a set functor. For every coalgebra a: A — FA its
canonical graph is the following coalgebra for Z: A < FA 12 P A.

Thanks to the subnaturality of 7 one obtains the following results.

Proposition 4.9. For every set functor F preserving intersections, the next
time operator of a coalgebra (A, «) coincides with that of its canonical graph.

Corollary 4.10 [24, Rem. 6.3.4]. A coalgebra for a set functor preserving
intersections is well-founded iff its canonical graph is well-founded.

Example 4.11. (1) For a (deterministic or non-deterministic) automaton, the
canonical graph has an edge from s to t iff there is a transition from s to ¢ for
some input letter. Thus, we obtain the characterization of well-foundedness as
stated in Example 4.5(3) and (4).

(2) Every polynomial functor Hy: Set — Set preserves intersections. Thus, a
coalgebra (A, «) is well-founded if there are no infinite paths in its canonical
graph. The canonical graph of A has an edge from a to b if a(a) is of the form
o(cty ..., cpn) for some o € X, and if b is one of the ¢;’s.

(3) Thus, for the functor FX = 1+ A x X x X, the coalgebra (A*,s) of
Example 3.3(8) is easily seen to be well-founded via its canonical graph. Indeed,
this graph has for every list w one outgoing edge to the list w<, and one to ws,
for every a € A. Hence, this is a well-founded graph.

Lemma 4.12. The next time operator is monotone: if m < n, then Om < On.

Lemma 4.13. Let a: A — FA be a coalgebra and m: B — A a subobject.
(1) There is a coalgebra structure 3: B — F B for which m gives a subcoalgebra

of (A, ) iff m < Om.
(2) There is a coalgebra structure 3: B — FB for which m gives a cartesian
subcoalgebra of (A, ) iff m = Om.

Lemma 4.14. For every coalgebra homomorphism f: (B, ) — (A, «) we have
=

where Oq and Op denote the next time operators of the coalgebras (A, a) and
(B, B), respectively, and < is the pointwise order.

Corollary 4.15. For every coalgebra homomorphism f: (B,3) — (A,a) we
— < X 3
have Qg - f = f - Oa, provided that either
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(1) f is a monomorphism in o/ and F preserves finite intersections, or

(2) F preserves inverse images.

Definition 4.16 [4]. The well-founded part of a coalgebra is its largest well-
founded subcoalgebra.

The well-founded part of a coalgebra always exists and is the coreflection
in the category of well-founded coalgebras [6, Prop. 2.27]. We provide a new,
shorter proof of this fact. The well-founded part is obtained by the following:

Construction 4.17 [6, Not. 2.22]. Let a: A — F A be a coalgebra. We know
that Sub(A) is a complete lattice and that the next time operator ) is monotone
(see Lemma 4.12). Hence, by the Knaster-Tarski fixed point theorem, O) has a
least fixed point, which we denote by a*: A* — A.

By Lemma 4.13(2), we know that there is a coalgebra structure o*: A* — FA*
so that a*: (A*,a*) — (A, «) is the smallest cartesian subcoalgebra of (4, ).

Proposition 4.18. For every coalgebra (A, ), the coalgebra (A*, ™) is well-
founded.

Proof. Let m: (B, B) — (A*,a*) be a cartesian subcoalgebra. By Lemma 4.13,
a*-m: B — Ais a fixed point of (). Since a* is the least fixed point, we have
a* <a*-m,ie a* =a*-m-x for some r: A* — B. Since a* is monic, we thus
have m - x = id 4. So m is a monomorphism and a split epimorphism, whence
an isomorphism. O

Proposition 4.19. The full subcategory of Coalg F' given by well-founded coal-
gebras is coreflective. In fact, the well-founded coreflection of a coalgebra (A, «)
is its well-founded part a*: (A*,a*) — (A, «).

Proof. We are to prove that for every coalgebra homomorphism f: (B, ) —
(A, «), where (B, ) is well-founded, there exists a coalgebra homomorphism
f%: (B, B) — (A*,a*) such that a* - f* = f. The uniqueness is easy.

For the existence of f#, we first observe that f (a*) is a pre-fixed point of
(Op: indeed, using Lemma 4.14 we have Og(?(a*)) < <T(OQ(CL*)) = <T(a*).
By Remark 4.4(2), we therefore have idp = b* < <?(a”‘) in Sub(B). Using the
adjunction of Lemma 2.11, we have f (idp) < a* in Sub(A4). Now factorize f as
B 5 C 2 A, We have ?(idg) = m, and we then obtain m = 7(id3) < a*,
i.e. there exists a morphism h: C — A* such that a* - h = m. Thus, ff =
h-e: B — A* is a morphism satisfying a* - f! =a*-h-e=m-e = f. It follows
that f* is a coalgebra homomorphism from (B, 3) to (A*,a*) since f and a* are
and F' preserves monomorphisms. ]

Construction 4.20 [6, Not. 2.22]. Let (A, ) be a coalgebra. We obtain
a*, the least fixed point of (), as the join of the following transfinite chain of
subobjects a;: A; — A, i € Ord. First, put ag = L 4, the least subobject of A.
Given a;: A; — A, put a;41 = Qa;: Aip1 = OQA; — A. For every limit ordinal
Js put a; = \/,_; a;. Since Sub(A) is a set, there exists an ordinal i such that
a; =a*: A* — A.
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Remark 4.21. Note that, whenever monomorphisms are smooth, we have Ag =
0 and the above join a; is obtained as the colimit of the chain of the subobject
a;: A — A, i < j (see Remark 2.12).

If F is a finitary functor on a locally finitely presentable category, then the
least ordinal ¢ with a* = a; is at most w, but in general one needs transfinite
iteration to reach a fixed point.

Example 4.22. Let (A,a) be a graph regarded as a coalgebra for & (see
Example 2.1). Then Ag = ), A; is formed by all leaves; i.e. those nodes with no
neighbors, A by all leaves and all nodes such that every neighbor is a leaf, etc.
We see that a node x lies in A;;1 iff every path starting in = has length at most
i. Hence A* = A, is the set of all nodes from which no infinite paths start.

We close with a general fact on well-founded parts of fized points (i.e. (co)alge-
bras whose structure is invertible). The following result generalizes [15, Cor. 3.4],
and it also appeared before for functors preserving finite intersections [4, The-
orem 8.16 and Remark 8.18]. Here we lift the latter assumption (see [5, The-
orem 7.6] for the new proof):

Theorem 4.23. Let o/ be a complete and well-powered category with smooth
monomorphisms. For F preserving monomorphisms, the well-founded part of
every fized point is an initial algebra. In particular, the only well-founded fixed
point is the initial algebra.

Example 4.24. We illustrate that for a set functor F' preserving monomorph-
isms, the well-founded part of the terminal coalgebra is the initial algebra.
Consider FFX = A x X + 1. The terminal coalgebra is the set A U A* of finite
and infinite sequences from the set A. The initial algebra is A*. It is easy to
check that A* is the well-founded part of A U A*.

5 The General Recursion Theorem and its Converse

The main consequence of well-foundedness is parametric recursivity. This is
Taylor’s General Recursion Theorem [24, Theorem 6.3.13]. Taylor assumed that
F preserves inverse images. We present a new proof for which it is sufficient that
F preserves monomorphisms, assuming those are smooth.

Theorem 5.1 (General Recursion Theorem). Let </ be a complete and
wellpowered category with smooth monomorphisms. For F': of — & preserving
monomorphisms, every well-founded coalgebra is parametrically recursive.

Proof sketch. (1) Let (A, a) be well-founded. We first prove that it is recursive.
We use the subobjects a;: A; — A of Construction 4.20%, the corresponding

4 One might object to this use of transfinite recursion, since Theorem 5.1 itself could
be used as a justification for transfinite recursion. Let us emphasize that we are
not presenting Theorem 5.1 as a foundational contribution. We are building on the
classical theory of transfinite recursion.
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morphisms a(a;): Aiy1 = OQA; — FA; (cf. Definition 4.3), and the recursive
coalgebras (F0,w; ;1) of Example 3.3(6). We obtain a natural transformation
h from the chain (4;) in Construction 4.20 to the initial-algebra chain (F0) (see
Remark 2.13) by transfinite recursion.

Now for every algebra e: FX — X, we obtain a unique coalgebra-to-algebra
morphism f;: F'0 — X, i.e. we have that f; = e Ff; - w;;+1. Since (4,«) is
well-founded, we know that o = o = «(a;) for some <. From this it is not difficult
to prove that f; - h; is a coalgebra-to-algebra morphism from (A, ) to (X, e).

In order to prove uniqueness, we prove by transfinite induction that for any
given coalgebra-to-algebra homomorphism e, one has ef - a; = f; - h; - a; for
every ordinal number j. Then for the above ordinal number ¢ with a; = id4, we
have ef = f; - h;, as desired. This shows that (A, a) is recursive.

(2) We prove that (A, «) is parametrically recursive. Consider the coalgebra
(a,idp): A — FA x A for F(—) x A. This functor preserves monomorphisms
since F' does and monomorphisms are closed under products. The next time
operator O) on Sub(A) is the same for both coalgebras since the square (4.1) is a
pullback if and only if the square on the right below is one.

Since id4 is the unique fixed point of ()

w.r.t. ' (see Definition 4.3), it is also the

unique fixed point of ) w.r.t. F(—) x A. 0S (a(m),Om) FSx A
Thus, (A, {a,ids)) is a well-founded coal- _

gebra for F'(—) x A. By the previous argu- Oml IFmXA
ment, this coalgebra is thus recursive for A (o) FAx A
F(—) x A; equivalently, (A4, «) is paramet-

rically recursive for F'. O

Theorem 5.2. For every endofunctor on Set or Veck (vector spaces and linear
maps), every well-founded coalgebra is parametrically recursive.

Proof sketch. For Set, we apply Theorem 5.1 to the Trnkova hull F' (see Proposi-
tion 2.3), noting that F and F have the same (non-empty) coalgebras. Moreover,
one can show that every well-founded (or recursive) F-coalgebra is a well-founded
(recursive, resp.) F-coalgebra. For Vecg, observe that monomorphisms split and
are therefore preserved by every endofunctor F'. O

Example 5.3. We saw in Example 4.11(3) that for FX = 14+ A x X x X
the coalgebra (A, s) from Example 3.3(8) is well-founded, and therefore it is
(parametrically) recursive.

Example 5.4. Well-founded coalgebras need not be recursive when F does
not preserve monomorphisms. We take &/ to be the category of sets with a
predicate, i.e. pairs (X, A), where A C X. Morphisms f: (X, A) — (Y, B) satisfy
f[A] € B. Denote by 1 the terminal object (1,1). We define an endofunctor
F by F(X,0) = (X +1,0), and for A # (), F(X,A) = 1. For a morphism
f:(X,A) = (Y,B),put Ff = f+idif A= 0;if A+# (), then also B # () and
Ffisid: 1 — 1.
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The terminal coalgebra is id: 1 — 1, and it is easy to see that it is well-
founded. But it is not recursive: there are no coalgebra-to-algebra morphisms
into an algebra of the form F(X,0) — (X, 0).

We next prove a converse to Theorem 5.1: “recursive = well-founded”.
Related results appear in Taylor [23, 24], Addmek et al. [3] and Jeannin et
al. [15].

Recall universally smooth monomorphisms from Definition 2.8(2). A pre-fived
point of F' is a monic algebra a: F'A — A.

Theorem 5.5. Let o/ be a complete and wellpowered category with universally
smooth monomorphisms, and suppose that F: o/ — o preserves inverse images
and has a pre-fized point. Then every recursive coalgebra is well-founded.

Proof. (1) We first observe that an initial algebra exists. This follows from results
by Trnkova et al. [25] as we now briefly recall. Recall the initial-algebra chain
from Remark 2.13. Let 8: FB — B be a pre-fixed point. Then there is a unique
cocone f3;: F'0 — B satisfying ;11 = - F3;. Moreover, each j3; is monomorphic.
Since B has only a set of subobjects, there is some A such that for every ¢ > A,
all of the morphisms /3; represent the same subobject of B. Consequently, wx x4+1
of Remark 2.13 is an isomorphism due to By = fxt1 - wary1. Then pF = F0
with the structure « = wy A+1 : F(uF) — pF is an initial algebra.
(2) Now suppose that (A, «) is a recursive coalgebra. Then there exists a unique
coalgebra homomorphism h: (A,a) — (uF,t™!). Let us abbreviate w;y by
¢;i: F'0 — pF, and recall the subobjects a;: A; — A from Construction 4.20.
We will prove bltransﬁmte induction that a; is the inverse image of ¢; under h; in
symbols: a; = h (¢;) for all ordinals i. Then it follows that ay is an isomorphism,
since so is ¢y, whence (A, ) is well-founded.

In the base case i = 0 this is clear since Ay = Wy = 0 is a strict initial object.

For the isolated step we compute the pullback of ¢;11: W11 — pF along h
using the following diagram:

alaq) Fh;

Aipr FA;

N S

A—2 5 FA Ly P(uF) —— uF
L h 7

By the induction hypothesis and since F preserves inverse images, the middle
square above is a pullback. Since the structure map ¢ of the initial algebra is an
isomorphism, it follows that the middle square pasted with the right-hand triangle
is also a pullback. Finally, the left-hand square is a pullback by the definition of
a;+1. Thus, the outside of the above diagram is a pullback, as required.

For a limit ordinal j, we know that a; = \/Z<J a; and similarly, ¢; = \/Z<
since W; = colim;«; W, and monomorphisms are smooth (see Remark 2. 12( ))

Using Remark 2.12(3) and the induction hypothesis we thus obtain 3 (¢j) =

— —
h (Vi<j Ci) = vi<j h(ci) = vi<j a; = aj.

s

O
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Corollary 5.6. Let o/ and F' satisfy the assumptions of Theorem 5.5. Then the
following properties of a coalgebra are equivalent:

1) well-foundedness,
2) parametric recursiveness,

(

(

(3) recursiveness,

(4) existence of a homomorphism into (uF,.=1),
(

5) existence of a homomorphism into a well-founded coalgebra.

Proof sketch. We already know (1) = (2) = (3). Since F has an initial algebra (as
proved in Theorem 5.5), the implication (3) = (4) follows from Example 3.3(2).
In Theorem 5.5 we also proved (4) = (1). The implication (4) = (5) follows
from Example 4.5(2). Finally, it follows from [6, Remark 2.40] that (uF,.™1) is
a terminal well-founded coalgebra, whence (5) = (4). O

Example 5.7. (1) The category of many-sorted sets satisfies the assumptions
of Theorem 5.5, and polynomial endofunctors on that category preserve inverse
images. Thus, we obtain Jeannin et al’s result [15, Thm. 3.3] that (1)—(4) in
Corollary 5.6 are equivalent as a special instance.

(2) The implication (4) = (3) in Corollary 5.6 does not hold for vector spaces.
In fact, for the identity functor on Vecyx we have puld = (0, id). Hence, every
coalgebra has a homomorphism into p/d. However, not every coalgebra is recursive,
e.g. the coalgebra (K, id) admits many coalgebra-to-algebra morphisms to the
algebra (K, id). Similarly, the implication (4) = (1) does not hold.

We also wish to mention a result due to Taylor [23, Rem. 3.8]. It uses the concept
of a subobject classifier originating in [17] and prominent in topos theory. This is
an object {2 with a subobject ¢: 1 — 2 such that for every subobject b: B — A
there is a unique b: A — 2 such that b is the inverse image of ¢t under b, By
definition, every elementary topos has a subobject classifier, in particular every
category Set® with € small.

Our standing assumption that <7 is a complete and well-powered category is
not needed for the next result: finite limits are sufficient.

Theorem 5.8 (Taylor [23]). Let F' be an endofunctor preserving inverse im-
ages on a finitely complete category with a subobject classifier. Then every recursive
coalgebra is well-founded.

Corollary 5.9. For every set functor preserving inverse images, the following
properties of a coalgebra are equivalent:

well-foundedness <= parametric recursiveness <= Tecursiveness.

Example 5.10. The hypothesis in Theorems 5.5 and 5.8 that the functor
preserves inverse images cannot be lifted. In order to see this, we consider the
functor R: Set — Set of Example 2.2(4). It preserves monomorphisms but not
inverse images. The coalgebra A = {0, 1} with the structure v constant to (0,1)
is recursive: given an algebra g: RB — B, the unique coalgebra-to-algebra
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homomorphism h: {0,1} — B is given by h(0) = h(1) = B(d). But A is not
well-founded: ) is a cartesian subcoalgebra.

Recall that an initial algebra (uF), ¢) is also considered as a coalgebra (uF,t=1).
Taylor [23, Cor. 9.9] showed that, for functors preserving inverse images, the
terminal well-founded coalgebra is the initial algebra. Surprisingly, this result is
true for all set functors.

Theorem 5.11 [6, Thm. 2.46]. For every set functor, a terminal well-founded
coalgebra is precisely an initial algebra.

Theorem 5.12. For every functor on Veck preserving inverse images, the fol-
lowing properties of a coalgebra are equivalent:

well-foundedness <= parametric recursiveness <= recursiveness.

6 Closure Properties of Well-founded Coalgebras

In this section we will see that strong quotients and subcoalgebras (see Remark 2.7)
of well-founded coalgebras are well-founded again. We mention the following
corollary to Proposition 4.19. For endofunctors on sets preserving inverse images
this was stated by Taylor [24, Exercise VI.16]:

Proposition 6.1. The subcategory of Coalg F' formed by all well-founded coal-
gebras is closed under strong quotients and coproducts in Coalg F.

This follows from a general result on coreflective subcategories [2, Thm. 16.8]:
the category Coalg F' has the factorization system of Proposition 2.6, and its
full subcategory of well-founded coalgebras is coreflective with monomorphic
coreflections (see Proposition 4.19). Consequently, it is closed under strong
quotients and colimits.

We prove next that, for an endofunctor preserving finite intersections, well-
founded coalgebras are closed under subcoalgebras provided that the complete
lattice Sub(A) is a frame. This means that for every subobject m: B »— A and
every family m; (i € I) of subobjects of A we have mA\/,c; m; = \/,;c;(mAm;).
Equivalently, 7: Sub(A) — Sub(B) (see Notation 2.10) has a right adjoint
m.: Sub(B) — Sub(A).

This property holds for Set as well as for the categories of posets, graphs,
topological spaces, and presheaf categories Seth, % small. Moreover, it holds for
every Grothendieck topos. The categories of complete partial orders and Vecg
do not satisfy this requirement.

Proposition 6.2. Suppose that F preserves finite intersections, and let (A, «)
be a well-founded coalgebra such that Sub(A) a frame. Then every subcoalgebra
of (A, @) is well-founded.
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Proof. Let m: (B, 8) — (A, «) be a subcoalgebra. We will show that the only
pre-fixed point of Qg is idp (cf. Remark 4.4(2)). Suppose s: S — B fulfils
Og(s) < s. Since F preserves finite intersections, we have - OQa=03" n by
Corollary 4.15(1). The counit of the above adjunction 71z = m,, yields 1 (m.(s)) <
5, 50 that we obtain 1 (Qa (mx(5))) = O (M (m.(s))) < Op(s) < s. Using again
the adjunction 2 - m.,, we have equivalently that O (12 (s)) < m.(s); i.e. . (s)
is a pre-fixed point of (), . Since (A, «) is well-founded, Corollary 4.15(1) implies
that m.(s) = id4. Since fn is also a right adjoint and therefore preserves the top
element of Sub(B), we thus obtain idp = T (ida) = T (m.(s)) < s. O

Remark 6.3. Given a set functor F' preserving inverse images, a much better
result was proved by Taylor [24, Corollary 6.3.6]: for every coalgebra homo-
morphism f: (B, ) = (A, «) with (A, @) well-founded so is (B, 8). In fact, our
proof above is essentially Taylor’s.

Corollary 6.4. If a set functor preserves finite intersections, then subcoalgebras
of well-founded coalgebras are well-founded.

Trnkova [26] proved that every set functor preserves all nonempty finite
intersections. However, this does not suffice for Corollary 6.4:

Example 6.5. A well-founded coalgebra for a set functor can have non-well-
founded subcoalgebras. Let F'() = 1 and FX = 1+ 1 for all nonempty sets X, and
let Ff =inl: 1 — 1+ 1 be the left-hand injection for all maps f: ) — X with
X nonempty. The coalgebra inr: 1 — F1 is not well-founded because its empty
subcoalgebra is cartesian. However, this is a subcoalgebra of id: 1+1 — 141
(via the embedding inr), and the latter is well-founded.

The fact that subcoalgebras of a well-founded coalgebra are well-founded does
not necessarily need the assumption that Sub(A) is a frame. Instead, one may
assume that the class of morphisms is universally smooth:

Theorem 6.6. If o/ has universally smooth monomorphisms and F preserves
finite intersections, every subcoalgebra of a well-founded coalgebra is well-founded.

7 Conclusions

Well-founded coalgebras introduced by Taylor [24] have a compact definition based
on an extension of Jacobs’ ‘next time’ operator. Our main contribution is a new
proof of Taylor’s General Recursion Theorem that every well-founded coalgebra is
recursive, generalizing this result to all endofunctors preserving monomorphisms
on a complete and well-powered category with smooth monomorphisms. For
functors preserving inverse images, we also have seen two variants of the converse
implication “recursive = well-founded”, under additional hypothesis: one due
to Taylor for categories with a subobject classifier, and the second one provided
that the category has universally smooth monomorphisms and the functor has a
pre-fixed point. Various counterexamples demonstrate that all our hypotheses
are necessary.
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Abstract. Negotiations were introduced in [6] as a model for concurrent
systems with multiparty decisions. What is very appealing with negotia-
tions is that it is one of the very few non-trivial concurrent models where
several interesting problems, such as soundness, i.e. absence of deadlocks,
can be solved in PTIME [3]. In this paper, we introduce the model of
timed negotiations and consider the problem of computing the minimum
and the maximum execution times of a negotiation. The latter can be
solved using the algorithm of [10] computing costs in negotiations, but
surprisingly minimum execution time cannot.

This paper proposes new algorithms to compute both minimum and
maximum execution time, that work in much more general classes of ne-
gotiations than [10], that only considered sound and deterministic nego-
tiations. Further, we uncover the precise complexities of these questions,
ranging from PTIME to A% -complete. In particular, we show that com-
puting the minimum execution time is more complex than computing the
maximum execution time in most classes of negotiations we consider.

1 Introduction

Distributed systems are notoriously difficult to analyze, mainly due to the ex-
plosion of the number of configurations that have to be considered to answer
even simple questions. A challenging task is then to propose models on which
analysis can be performed with tractable complexities, preferably within poly-
nomial time. Free choice Petri nets are a classical model of distributed systems
that allow for efficient verification, in particular when the nets are 1-safe [4,5].
Recently, [6] introduced a new model called negotiations for workflows and
business processes. A negotiation describes how processes interact in a dis-
tributed system: a subset of processes in a node of the system take a synchronous
decisions among several outcomes. The effect of this outcome sends contribut-
ing processes to a new set of nodes. The execution of a negotiation ends when
processes reach a final configuration. Negotiations can be deterministic (once an
outcome is fixed, each process knows its unique successor node) or not.
Negotiations are an interesting model since several properties can be decided
with a reasonable complexity. The question of soundness, i.e., deadlock-freedom:
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whether from every reachable configuration one can reach a final configuration,
is PSPACE-complete. However, for deterministic negotiations, it can be decided
in PTIME [7]. The decision procedure uses reduction rules. Reduction techniques
were originally proposed for Petri nets [2,8,11,16]. The main idea is to define
transformations rules that produce a model of smaller size w.r.t. the original
model, while preserving the property under analysis. In the context of negotia-
tions, [7, 3] proposed a sound and complete set of soundness-preserving reduction
rules and algorithms to apply these rules efficiently. The question of soundness
for deterministic negotiations was revisited in [9] and showed NLOGSPACE-
complete using anti patterns instead of reduction rules. Further, they show that
the PTIME result holds even when relaxing determinism [9]. Negotiation games
have also been considered to decide whether one particular process can force ter-
mination of a negotiation. While this question is EXPTIME-complete in general,
for sound and deterministic negotiations, it becomes PTIME [12].

While it is natural to consider cost or time in negotiations (e.g. think of the
Brexit negotiation where time is of the essence, and which we model as running
example in this paper), the original model of negotiations proposed by [6] is
only qualitative. Recently, [10] has proposed a framework to associate costs to
the executions of negotiations, and adapt a static analysis technique based on
reduction rules to compute end-to-end cost functions that are not sensitive to
scheduling of concurrent nodes. For sound and deterministic negotiations, the
end-to-end cost can be computed in O(n.(C + n)), where n is the size of the
negotiation and C' the time needed to compute the cost of an execution. Requir-
ing soundness or determinism seems perfectly reasonable, but asking sound and
deterministic negotiations is too restrictive: it prevents a process from waiting
for decisions of other processes to know how to proceed.

In this paper, we revisit time in negotiations. We attach time intervals to
outcomes of nodes. We want to compute maximal and minimal executions times,
for negotiations that are not necessarily sound and deterministic. Since we are
interested in minimal and maximal execution time, cycles in negotiations can be
either bypassed or lead to infinite maximal time. Hence, we restrict this study to
acyclic negotiations. Notice that time can be modeled as a cost, following [10],
and the maximal execution time of a sound and deterministic negotiation can
be computed in PTIME using the algorithm from [10]. Surprisingly however, we
give an example (Example 3) for which the minimal execution time cannot be
computed in PTIME by this algorithm.

The first contribution of the paper shows that reachability (whether at least
one run of a negotiation terminates) is NP-complete, already for (untimed) deter-
ministic acyclic negotiations. This implies that computing minimal or maximal
execution time for deterministic (but unsound) acyclic negotiations cannot be
done in PTIME (unless NP=PTIME). We characterize precisely the complex-
ities of different decision variants (threshold, equality, etc.), with complexities
ranging from (co-)NP-complete to AL

We thus turn to negotiations that are sound but not necessarily determinis-
tic. Our second contribution is a new algorithm, not based on reduction rules,
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to compute the maximal execution time in PTIME for sound negotiations. It is
based on computing the maximal execution time of critical paths in the nego-
tiations. However, we show that minimal execution time cannot be computed
in PTIME for sound negotiations (unless NP=PTIME): deciding whether the
minimal execution time is lower than T is NP-complete, even for T' given in
unary, using a reduction from a Bin packing problem. This shows that minimal
execution time is harder to compute than maximal execution time.

Our third contribution consists in defining a class in which the minimal exe-
cution time can be computed in (pseudo) PTIME. To do so, we define the class
of k-layered negotiations, for k fixed, that is negotiations where nodes can be or-
ganized into layers of at most k£ nodes at the same depth. These negotiations can
be executed without remembering more than k£ nodes at a time. In this case, we
show that computing the maximal execution time is PTIME, even if the negoti-
ation is neither deterministic nor sound. The algorithm, not based on reduction
rules, uses the k-layer restriction in order to navigate in the negotiation while
considering only a polynomial number of configurations. For minimal execution
time, we provide a pseudo PTIME algorithm, that is PTIME if constants are
given in unary. Finally, we show that the size of constants do matter: deciding
whether the minimal execution time of a k-layered negotiation is less than T
is NP-complete, when T is given in binary. We show this by reducing from a
Knapsack problem, yet again emphasizing that the minimal execution time of a
negotiation is harder to compute than its maximal execution time.

This paper is organized as follows. Section 2 introduces the key ingredients of
negotiations, determinism and soundness, known results in the untimed setting,
and provides our running example modeling the Brexit negotiation. Section 3
introduces time in negotiations, gives a semantics to this new model, and for-
malizes several decision problems on maximal and minimal durations of runs in
timed negotiations. We recall the main results of the paper in Section 4. Then,
Section 5 considers timed execution problems for deterministic negotiations, Sec-
tion 6 for sound negotiations, and section 7 for layered negotiations. Proof details
for the last three sections are given in an extended version of this paper [1].

2 Negotiations: Definitions and Brexit example

In this section, we recall the definition of negotiations, of some subclasses (acyclic
and deterministic), as well as important problems (soundness and reachability).

Definition 1 (Negotiation [6,10]). A negotiation over a finite set of pro-
cesses P is a tuple N' = (N,ng,ny, X), where:

— N s a finite set of nodes. Fach node is a pair n = (P,, R,) where P, C P
is a mon empty set of processes participating in node n, and R, is a finite
set of outcomes of node n (also called results), with R, , = {ry}. We denote
by R the union of all outcomes of nodes in N.

— ng s the first node of the negotiation and ny is the final node. Fvery process
in P participates in both ng and ny.
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no-backstop

Fig. 1. A (sound but non-deterministic) negotiation modeling Brexit.

— Foralln € N, X, : P, x R, — 2V is a map defining the transition relation
from node n, with X,,(p,7) =0 iff n = nys,r =rp. We denote X : N x P x
R — 2N the partial map defined on Unen{n} x Py x Ry), with X(n,p,a) =
Xn(p,a) for all p,a.

Intuitively, at a node n = (P,, R,) in a negotiation, all processes of P,, have
to agree on a common outcome 7 chosen from R,,. Once this outcome r is chosen,
every process p € P, is ready to move to any node prescribed by X (n,p,r). A
new node m can only start when all processes of P, are ready to move to m.

Ezxample 1. We illustrate negotiations by considering a simplified model of the
Brexit negotiation, see Figure 1. There are 3 processes, P = { EU, PM, Pa}. At
first EU decides whether or not to enforce a backstop in any deal (outcome back-
stop) or not (outcome no-backstop). In the meantime, PM decides to proroge
Pa, and Pa can choose or not to appeal to court (outcome court/no court). If it
goes to court, then PM and Pa will take some time in court (c-meet, defend),
before PM can meet EU to agree on a deal. Otherwise, Pa goes to recess, and
PM can meet EU directly. Once EU and PM agreed on a deal, PM tries to
convince Pa to vote the deal. The final outcome is whether the deal is voted, or
whether Brexit is delayed.

Definition 2 (Deterministic negotiations). A process p € P is determinis-
tic iff, for everyn € N and every outcome r of n, X(n,p,r) is a singleton. A ne-
gotiation is deterministic iff all its processes are deterministic. It is weakly non-
deterministic [9] (called weakly deterministic in [3]) iff, for every node n, one of
the processes in P, is deterministic. Last, it is very weakly non-deterministic [9]
(called weakly deterministic in [6]) iff, for every n, every p € P, and every out-
come r of n, there exists a deterministic process q such that q € P, for every
n' € X(n,p,r).
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In deterministic negotiations, once an outcome is chosen, each process knows
the next node it will be involved in. In (very-)weakly non-deterministic nego-
tiations, the next node might depend upon the outcome chosen in other nodes
by other processes. However, once the outcomes have been chosen for all cur-
rent nodes, there is only one next node possible for each process. Observe that
the class of deterministic negotiations is isomorphic to the class of free choice
workflow nets [10]. In Example 1, the Brexit negotiation is non-deterministic,
because process PM is non-deterministic. Indeed, consider outcomes c-meet: it
allows two nodes, according to whether the backstop is enforced or not, which
is a decision taken by process EU.

Semantics: A configuration [3] of a negotiation is a mapping M : P — 2V,
Intuitively, it tells for each process p the set M (p) of nodes p is ready to engage in.
The semantics of a negotiation is defined in terms of moves from a configuration
to the next one. The initial My and final M configurations, are given by My(p) =
{no} and M(p) = 0 respectively for every process p € P. A configuration M
enables node n if n € M(p) for every p € P,,. When n is enabled, a decision
at node n can occur, and the participants at this node choose an outcome r €
R,,. The occurrence of (n,r) produces the configuration M’ given by M’'(p) =
X(n,p,r) for every p € P,, and M'(p) = M (p) for remaining processes in P\ P,.
Moving from M to M’ after choosing (n, r) is called a step, denoted M —=s M’. A
run of N is a sequence (n1,71), (n2,r2)...(nk, 7 ) such that there is a sequence of
configurations My, My, ..., My, and every (n;,r;) is a step between M;_; and M;.
A run starting from the initial configuration and ending in the final configuration
is called a final run. By definition, its last step is (ns, 7).

An important class of negotiations in the context of timed negotiations is
acyclic negotiations, where infinite sequence of steps is impossible:

Definition 3 (Acyclic negotiations). The graph of a negotiation N is the
labeled graph Gy = (V,E) where V.= N, and E = {((n,(p,r),n’) | n' €
X(n,p,r)}, with pairs of the form (p,r) being the labels. A negotiation is acyclic
iff its graph is acyclic. We denote by Paths(G ) the set of paths in the graph of a
negotiation. These paths are of form ™ = (ng, (po,70),n1) - - - (Nk—1, Pk, Tk), Nk )-

The Brexit negotiation of Fig.1 is an example of acyclic negotiation. Despite
their apparent simplicity, negotiations may express involved behaviors as shown
with the Brexit example. Indeed two important questions in this setting are
whether there is some way to reach a final node in the negotiation from (i) the
initial node and (ii) any reachable node in the negotiation.

Definition 4 (Soundness and Reachability).

1. A negotiation is sound iff every run from the initial configuration can be
extended to a final run. The problem of soundness is to check if a given
negotiation is sound.

2. The problem of reachability asks if a given negotiation has a final run.
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Notice that the Brexit negotiation of Fig.1 is sound (but not deterministic).
It seems hard to preserve the important features of this negotiation while being
both sound and deterministic. The problem of soundness has received consider-
able attention. We summarize the results about soudness in the next theorem:

Theorem 1. Determining whether a negotiation is sound is PSPACE-Complete.
For (very-)weakly non-deterministic negotiations, it is co-NP-complete [9]. For
acyclic negotiations, it is in DP and co-NP-Hard [6]. Determining whether an
acyclic weakly non-deterministic negotiation is sound is in PTIME [3, 9]. Fi-
nally, deciding soundness for deterministic negotiations is NLOGSPACE-complete [9].

Checking reachability is NP-complete, even for deterministic acyclic negoti-
ations (surprisingly, we did not find this result stated before in the literature):

Proposition 1. Reachability is NP-complete for acyclic negotiations, even if
the negotiation is deterministic.

Proof (sketch). One can guess a run of size < |[N| in polynomial time, and verify
if it reaches ny, which gives the inclusion in NP. The hardness part comes from
a reduction from 3-CNF-SAT that can be found in the proof of Theorem 3. O

k-Layered Acyclic Negotiations

We introduce a new class of negotiations which has good algorithmic properties,
namely k-layered acyclic negotiations, for k fixed. Roughly speaking, nodes of a
k-layered acyclic negotiations can be arranged in layers, and these layers contain
at most k nodes. Before giving a formal definition, we need to define the depth
of nodes in \V.

First, a path in a negotiation is a sequence of nodes ng...ny such that for
all i € {1,...,£— 1}, there exists p;,r; with n;11 € X(n;, p;,7;). The length of a
path ng,...,ng is £. The depth depth(n) of a node n is the maximal length of a
path from ng to n (recall that A is acyclic, so this number is always finite).

Definition 5. An acyclic negotiation is layered if for all node n, every path
reaching n has length depth(n). An acyclic negotiation is k-layered if it is layered,
and for all £ € N, there are at most k nodes at depth {.

The Brexit example of Fig. 1 is 6-layered. Notice that a layered negotiation
is necessarily k-layered for some k < |[N] — 2. Note also that we can always
transform an acyclic negotiation N into a layered acyclic negotiation A, by
adding dummy nodes: for every node m € X (n, p,r) with depth(m) > depth(n)+
1, we can add several nodes nq,...n; with £ = depth(m) — (depth(n) 4+ 1), and
processes P,, = {p}. We compute a new relation X’ such that X’'(n,p,r) =
{n1}, X(ng,p,r) = {m} and for every i € 1.0 — 1, X(n;,p,7) = n;+1. This
transformation is polynomial: the resulting negotiation is of size up to |N/| x
|X'| x |P|. The proof of the following Theorem can be found in [1].

Theorem 2. Let k € N*. Checking reachability or soundness for a k-layered
acyclic negotiation N can be done in PTIME.



Timed Negotiations 43
3 Timed Negotiations

In many negotiations, time is an important feature to take into account. For
instance, in the Brexit example, with an initial node starting at the begining of
September 2019, there are 9 weeks to pass a deal till the 31%¢ October deadline.
We extend negotiations by introducing timing constraints on outcomes of
nodes, inspired by timed Petri nets [14] and by the notion of negotiations with
costs [10]. We use time intervals to specify lower and upper bounds for the
duration of negotiations. More precisely, we attach time intervals to pairs (n,r)
where n is a node and r an outcome. In the rest of the paper, we denote by
T the set of intervals with endpoints that are non-negative integers or oo. For
convenience we only use closed intervals in this paper (except for oo), but the
results we show can also be extended to open intervals with some notational
overhead. Intuitively, outcome r can be taken at a node n with associated time
interval [a,b] only after a time units have elapsed from the time all processes
contributing to n are ready to engage in n, and at most b time units later.

Definition 6. A timed negotiation is a pair (N,v) where N is a negotiation,
and vy : N x R — T associates an interval to each pair (n,r) of node and outcome
such thatr € R,,. For a given node n and outcome r, we denote by v~ (n,r) (resp.
v (n,r)) the lower bound (resp. the upper bound) of y(n,r).

Ezxample 2. In the Brexit example, we define the following timed constraints ~.
We only specify the outcome names, as the timing only depends upon them.
Backstop and no-backstop both take between 1 and 2 weeks: y(backstop) =
~(no-backstop) = [1,2]. In case of no-court, recess takes 5 weeks ~y(recess) =
[5,5], and PM can meet EU immediatly y(meet) = [0,0]. In case of court ac-
tion, PM needs to spend 2 weeks in court y(c-meet) = [2, 2], and depending on
the court delay and decision, Pa needs between 3 (court overules recess) to 5
(court confirms recess) weeks, y(defend) = [3,5]. Agreeing on a deal can take
anywhere from 2 weeks to 2 years (104 weeks): v(deal agreed) = [2, 104]—some
would say infinite time is even possible! It needs more time with the backstop,
~v(deal w/backstop) = [5, 104]. All other outcomes are assumed to be immediate,
i.e., associated with [0, 0].

Semantics: A timed valuation is a map p : P — RZ° that associates a non-
negative real value to every process. A timed configuration is a pair (M, u) where
M is a configuration and p a timed valuation. There is a timed step from (M, )

to (M’ 1), denoted (M, ) 5 (M, ), i () M 5 MY, i) p ¢ P
implies p/(p) = p(p) (iii) 3d € v(n,r) such that Vp € PB,, we have p'(p) =

max, ep, 1(p') +d (d is the duration of node n).

Intuitively a timed step (M, ) L), (M’, 1) depicts a decision taken at
node n, and how long each process of P, waited in that node before taking
decision (n, ). The last process engaged in n must wait for a duration contained
in y(n,r). However, other processes may spend a time greater than y*(n,r).
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A timed run is a sequence of steps p = (Mo, io) —= (My,p1) ... (M, uy)
where M is the initial configuration, pg(p) = 0 for every p € P, and each
(M, i) N (M1, ptig1) is a timed step. It is final if My, = My. Its execution
time 6(p) is defined as d(p) = max,ep k(D).

Notice that we only attached timing to processes, not to individual steps.
With our definition of runs, timing on steps may not be monotonous (i.e., non-
decreasing) along the run, while timing on processes is. Viewed by the lens of
concurrent systems, the timing is monotonous on the partial orders of the system
rather than the linearization. It is not hard to restrict paths, if necessary, to have
a monotonous timing on steps as well. In this paper, we are only interested in
execution time, which does not depend on the linearization considered.

Given a timed negotiation A/, we can now define the minimum and maximum
execution time, which correspond to optimistic or pessimistic views:

Definition 7. Let N be a timed negotiation. Its minimum execution time, de-
noted mintime(N) is the minimal 6(p) over all final timed run p of N'. We
define the maximal execution time maztime(N) of N similarly.

Given T € N, the main problems we consider in this paper are the following:

— The mintime problem, i.e., do we have mintime(N) < T7?.

In other words, does there exist a final timed run p with §(p) < T?
— The maxtime problem, i.e., do we have maztime(N) < T'7.

In other words, does 6(p) < T for every final timed run p?

These questions have a practical interest : in the Brexit example, the question
“is there a way to have a vote on a deal within 9 weeks ?” is indeed a minimum
execution time problem. We also address the equality variant of these decision
problems, i.e., mintime(N) = T : is there a final run of N that terminates
in exactly T time units and no other final run takes less than T time units?
Similarly for maztime(N) = T.

Example 3. We use Fig. 1 to show that it is not easy to compute the minimal
execution time, and in particular one cannot use the algorithm from [10] to com-
pute it. Consider the node n with P, = {PM, Pa} and R,, = {court, no_court}.
If the outcome is court, then PM needs 2 weeks before (s)he can talk to EU
and Pa needs at least 3 weeks before he can debate. However, if the outcome is
no_court, then PM need not wait before (s)he can talk to EU, but Pa wastes
5 weeks in recess. This means that one needs to remember different alternatives
which could be faster in the end, depending on the future. On the other hand,
the algorithm from [10] attaches one minimal time to process Pa, and one min-
imal time to process PM. No matter the choices (0 or 2 for PM and 3 or 5
for Pa), there will be futures in which the chosen number will over or underap-
proximate the real minimal execution time (this choice is not explicit in [10])%.

* the authors of [10] acknowledged the issue with their algorithm for mintime.
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For maximum execution time, it is not an issue to attach to each node a unique
maximal execution time. The reason for the asymmetry between minimal and
maximal execution times of a negotiation is that the execution time of a path
is max,ep px(p), for pg the last timed valuation, which breaks the symmetry
between min and max.

4 High level view of the main results

In this section, we give a high-level description of our main results. Formal
statements can be found in the sections where they are proved. We gather in
Fig. 2 the precise complexities for the minimal and the maximal execution time
problems for 3 classes of negotiations that we describe in the following. Since we
are interested in minimum and maximum execution time, cycles in negotiations
can be either bypassed or lead to infinite maximal time. Hence, while we define
timed negotiations in general, we always restrict to acyclic negotiations (such as
Brexit) while stating and proving results.

In [10], a PTIME algorithm is given to compute different costs for negoti-
ations that are both sound and deterministic. One limitation of this result is
that it cannot compute the minimum execution time, as explained in Example
3. A second limitation is that the class of sound and deterministic negotiations
is quite restrictive: it cannot model situations where the next node a process
participates in depends on the outcome from another process, as in the Brexit
example. We thus consider classes where one of these restrictions is dropped.

We first consider (Section 5) negotiations that are deterministic, but with-
out the soundness restriction. We show that for this class, no timed problem
we consider can be solved in PTIME (unless NP=PTIME). Further, we show
that the equality problems (mazxtime/mintime(N) = T), are complete for the
complexity class DP, i.e., at the second level of the Boolean Hierarchy [15].

We then consider (Section 6) the class of negotiations that are sound, but not
necessarily deterministic. We show that maximum execution time can be solved
in PTIME, and propose a new algorithm. However, the minimum execution time
cannot be computed in PTIME (unless NP=PTIME). Again for the mintime
equality problem we have a matching DP-completeness result.

| [ Deterministic [ Sound [ k-layered ‘
Max < T | co-NP-complete (Thm. 3)
Max = T'| DP-complete (Prop. 2)

PTIME (Prop. 3) PTIME (Thm. 6)

pseudo-PTIME (Thm. 8)
NP-complete** (Thm. 7)
Min = T'| DP-complete (Prop. 2) |DP-complete* (Prop. 4) | pseudo-PTIME (Thm. 8)

Min < T'| NP-complete (Thm. 3) |NP-complete® (Thm. 5)

Fig. 2. Results for acyclic timed negotiations. D P refers to the complexity class, Dif-
ference Polynomial time [15], the second level of the Boolean Hierarchy.

* hardness holds even for very weakly non-deterministic negotiations, and 7" in unary.
** hardness holds even for sound and very weakly non-deterministic negotiations.



46 S. Akshay et al.

Finally, in order to obtain a polytime algorithm to compute the minimum
execution time, we consider the class of k-layered negotiations (see Section 7):
Given k € N, we can show that maztime(N') can be computed in PTIME for
k-layered negotiations. We also show that while the mintime(N) < T'? problem
is weakly NP-complete for k-layered negotiations, we can compute mintime(N)
in pseudo-PTIME, i.e. in PTIME if constants are given in unary.

5 Deterministic Negotiations

We start by considering the class of deterministic acyclic negotiations. We show
that both maximal and minimal execution times cannot be computed in PTIME
(unless NP=PTIME), as the threshold problems are (co-)NP-complete.

Theorem 3. The mintime(N) < T decision problem is NP complete, and the
mazxtime(N) < T decision problem is co-NP-complete for acyclic deterministic
timed negotiations.

Proof. For mintime(N') < T, containment in NP is easy: we just need to guess a
run p (of polynomial size as A is acyclic), consider the associated timed run p~
where all decisions are taken at their earliest possible dates, and check whether
5(p~) < T, which can be done in time O(|]N|+logT).

For the hardness, we give the proof in two steps. First, we start with a proof
of Proposition 1 that reachability problem is NP-hard using reduction of 3-CNF
SAT, i.e., given a formula ¢, we build a deterministic negotiation Ny s.t. ¢ is
satisfiable iff N has a final run. In a second step, we introduce timings on this
negotiation and show that mintime(N,) < T iff ¢ is satisfiable.

Step 1: Reducing 3-CNF-SAT to Reachability problem.

Given a Boolean formula ¢ with variables v;,1 < ¢ < n and clauses ¢j,1 < j <
m, for each variable v; we define the sets of clauses S; + = {¢; | v; is present in ¢;}
and S;: = {c¢; | —v; is present in ¢;}. Clauses in S;, and S;¢ are naturally
ordered: ¢; < ¢; iff ¢ < j. We denote these elements S; (1) < S;+(2) < ....
Similarly for set S; ¢.

Now, we construct a negotiation N, (as depicted in Figure 3) with a process
V; for each variable v; and a process C; for each clause c;:

— Initial node ng has a single outcome r taking each process C; to node Lone,,,
and each process V; to node Lone,,.

— Lone., has three outcomes: if literal v; € c¢j, then ¢; is an outcome, taking
Cj to Paire, v, and if literal —v; € ¢;, then f; is an outcome, taking C; to
Paire; —v,-

— The outcomes of Lone,,are true and false. Outcome true brings V; to
node Tlone,, ; and outcome false brings V; to node Flone,, i.

— We have a node Tlone,, ; for each j < |5, +| and Flone,, ; for each j <|S; ¢/,
with V; as only process. Let ¢, = S; ¢(j). Node T'lone,, ; has two outcomes
vton bringing V; to T'lone,, j+1 (or ny if j =|S;¢|), and vtoc, , bringing V;
to Paire, »,. The two outcomes from Flone,, ; are similar.
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) :
Tlone., . Flone,, 1 fi
vton vton

vton

Flone.,,,

vton

Floney, r41

Fig. 3. A part of NV, where clause ¢; is (i2 V =i V —i3) and clause ¢ is (44 V =@ V i5).
Timing is [0, 0] whereever not mentioned

— Node Pair,, ,, has V; and C, as its processes and one outcome ctof which
takes process C to final node ny and process V; to T'lone,, j+1 (with ¢, =
Six(4)), or to ny if j = |S;+|. Node Paire, -, is defined in the same way
from Flone,, ;.

With this we claim that N, has a final run iff ¢ is satisfiable which completes
the first step of the proof. We give a formal proof of this claim in Appendix A
of [1]. Observe that the negotiation N, constructed is deterministic and acyclic
(but it is not sound).

Step 2: Before we introduce timing on Ny, we introduce a new outcome 7/
at ng which takes all processes to ny. Now, the timing function v associated
with Ny is: y(no,r) = [2,2] and ~y(ng,r’) = [3,3] and v(n,r) = [0,0], for all
node n # ng and all r € R,. Then, mintime(N,) < 2 iff ¢ has a satisfiable
assignment: if mintime(Ny) < 2, there is a run with decision r taken at ng
which is final. But existence of any such final run implies satisfiability of ¢. For
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reverse implication, if ¢ is satisfiable, then the corresponding run for satisfying
assignment takes 2 time units, which means that mintime(Ny) < 2.

Similarly, we can prove that the MaxTime problem is co-NP complete by
changing y(ng, ) = [1,1] and asking if maztime(N,) > 1 for the new N. The
answer will be yes iff ¢ is satisfiable. a

We now consider the related problem of checking if mintime(N) = T (or if
maxtime(N) = T'). These problems are harder than their threshold variant un-
der usual complexity assumptions: they are DP-complete (Difference Polynomial
time class, i.e., second level of the Boolean Hierarchy, defined as intersection of
a problem in NP and one in co-NP [15]).

Proposition 2. The mintime(N) = T and maxtime(N) = T decision prob-
lems are DP-complete for acyclic deterministic negotiations.

Proof. We only give the proof for mintime (the proof for maztime is given in
Appendix A of [1]). Indeed, it is easy to see that this problem is in DP, as it can
be written as mintime(N) < T which is in NP and —(mintime(N) < T — 1)),
which is in co-NP. To show hardness, we use the negotiation constructed in the
above proof as a gadget, and show a reduction from the SAT-UNSAT problem
(a standard DP-complete problem).

The SAT-UNSAT Problem asks given two Boolean expressions ¢ and ¢,, both
in CNF forms with three literals per clause, is it true that ¢ is satisfiable and ¢’
is unsatisfiable? SAT-UNSAT is known to be DP-complete [15]. We reduce this
problem to mintime(N) = T.

Given ¢, ¢, we first make the corresponding negotiations Ay and N 5 as
in the previous proof. Let ng and ny be the initial and final nodes of N and
nz) and n/f be the initial and final nodes of N, o (Similarly, for other nodes we
write / above the nodes to signify they belong to A o )

In the negotiation N, o We introduce a new node ngy;, in which all the pro-
cesses participate (see Figure 4). The node nyy has a single outcome 77, which
sends all the processes to ny. Also, for node nz), apart from the outcome r which
sends all processes to different nodes, there is another outcome r,; which sends
all the processes to n4y;. Now we merge the nodes ny and n;) and call the merged
node 74cp,. Also nodes ny and n’f now have all the processes of N, and ng
participating in them. This merged process gives us a new negotiation N 66 1N
which the structure above ng., is same as N, while below it is same as N, o
Node ng., now has all the processes of Ny and ./\/'¢/ participating in it. The
outcomes of ngep will be same as that of njy (rqu,r). For both the outcomes of
Nsep the processes corresponding to Ny directly go to ny of the N, 6.8 Similarly
ng of N o which is same ng of Ny, sends processes corresponding to N di-
rectly to ngep for all its outcomes. We now define tlrmng function v for N 6.6

which is as follows: 'y(Lonevi, r) =[1,1] for all v; € ¢ and r € {true, false},
v(nau, ;) = [2,2] and y(n,r) = [0,0] for all other outcomes of nodes. With this
construction, one can conclude that mintime(Ny ,) = 2 iff ¢ is satisfiable and
¢ is unsatisfiable (see [1] for details). This completes the reduction and hence
proves DP-hardness. a
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Fig. 4. Structure of NV,

Finally, we consider a related problem of computing the min and max time.
To consider the decision variant, we rephrase this problem as checking whether
an arbitrary bit of the minimum execution time is 1. Perhaps surprisingly, we
obtain that this problem goes even beyond DP, the second level of the Boolean
Hierarchy and is in fact hard for AL (second level of the polynomial hierarchy),
which contains the entire Boolean Hierarchy. Formally,

Theorem 4. Given an acyclic deterministic timed negotiation and a positive
integer k,computing the k' bit of the mazimum/minimum evecution time is
AP -complete.

Finally, we remark that if we were interested in the optimization variant and
not the decision variant of the problem, the above proof can be adapted to show
that these variants are OptP-complete (as defined in [13]). But as optimization
is not the focus of this paper, we avoid formal details of this proof.

6 Sound Negotiations

Sound negotiations are negotiations in which every run can be extended to
a final run, as in Fig. 1. In this section, we show that maztime(N') can be
computed in PTIME for sound negotiations, hence giving PTIME complexi-
ties for the maztime(N) < T7 and maztime(N) = T? questions. However, we
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show that mintime(N) < T is NP-complete for sound negotiations, and that
mintime(N) = T is DP-complete, even if T' is given in unary.

Consider the graph Gar of a negotiation A. Let m = (no, (po,70),n1) - - -
(nk, (P, k), nik+1) be a path of Gy. We define the mazimal execution time of
a path 7 as the value 6% (m) = >, .o v (ni,ri). We say that a path = =

(no, (Pos70),n1) - -+ (ng, (pey7¢), ne41) is a path of some run p = (My, 1) (Tﬂf)

oo (My, py) if 7o, ..., 7 is a subword of 7], ..., 7.

Lemma 1. Let N be an acyclic and sound timed negotiation. Then maxtime(N)
= MaXrcPaths(Gar) ot (ﬂ-) + 'Y+ (nf7 rf)

Proof. Let us first prove that maxtime(N) > max e patns(cp) 07 (1)+7 1 (g, 7p).
Consider any path 7 of G, ending in some node n. First, as A is sound, we can

compute a run p, such that 7 is a path of p,, and p, ends in a configuration

in which n is enabled. We associate with p, the timed run p} which asso-

ciates to every node the latest possible execution date. We have easily d(pf) >

6T (m), and then we obtain maX ¢ paths(Gr) 0(PF) > MaXrepaths(Ga) 07 (7). As

mazxtime(N) is the maximal duration over all runs, it is hence necessarily greater

than maXﬂ'EPaths(G’N) 5(p7Jrr) + ’7+ (nfv Tf)'

We now prove that maztime(N) < max.cpatns(Gr) 01 (1) +71 (g, 7y). Take

(nuyra)

any timed run p = (My, p1) —=" -+ (Mg, pg) of N with a unique maximal node
ny. We show that there exists a path 7 of p such that §(p) < 6T (m) by induction
on the length k of p. The initialization is trivial for £ = 1. Let k € N. Because ny
is the unique maximal node of p, we have 0% (p) = maxpep, pr—1(p)+7" (g, 7).
We choose one py_1 maximizing ux—1(p). Let £ < k be the maximal index of a
decision involving process py_1 (i.e. px—1 € P,,). Now, consider the timed run
p’ subword of p, but with n, as unique maximal node (that is, it is p where
nodes n;, ¢ > ¢ has been removed, but also where some nodes n;,7 < ¢ have been
removed if they are not causally before ny (in particular, P,, N P,, = 0).)

By definition, we have that 6% (p) = 6T (p') + v (ne,7e) + v (ng, 7). We
apply the induction hypothesis on p’, and obtain a path 7’ of p’ ending in
ne such that 67 (p') + v (ng,re) < 6% (n'). It suffices to consider path m =
7' .(ne, (pk—1,7¢), nk) to prove the inductive step 6% (p) < 67 () + v F (nk, ).

Thus maztime(N) = max 6 (p) < maxcpains(cn) 07 (1) +7 T (ng,rp). O

Lemma 1 gives a way to evaluate the maximal execution time. This amounts
to finding a path of maximal weight in an acyclic graph, which is a standard
PTIME problem that can be solved using standard max-cost calculation.

Proposition 3. Computing the mazimal execution time for an acyclic sound
negotiation N' = (N,ng,ns, X) can be done in time O(|N|+ |X]).

A direct consequence is that maztime(N) < T and maztime(N) = T prob-
lems can be solved in polynomial time when N is sound. Notice that if A is
deterministic but not sound, then Lemma 1 does not hold: we only have an
inequality.
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We now turn to mintime(N'). We show that it is strictly harder to compute
for sound negotiations than maaxtime(N).

Theorem 5. mintime(N) < T is NP-complete in the strong sense for sound
acyclic negotiations, even if N is very weakly non-deterministic.

Proof (sketch). First, we can decide mintime(N) < T in NP. Indeed, one can
guess a final (untimed) run p of size < |N|, consider p~ the timed run corre-
sponding to p where all outcomes are taken at the earliest possible dates, and
compute in linear time §(p~), and check that 6(p~) < T.

The hardness part is obtained by reduction from the Bin Packing problem.
The reduction is similar to Knapsack, that we will present in Thm. 7. The
difference is that we use £ bins in parallel, rather than 2 processes, one for the
weight and one for the value. The hardness is thus strong, but the negotiation
is not k-layered for a bounded k (it is 2¢ + 1 bounded, with ¢ depending on the
input). A detailed proof is given in Appendix B of [1]. O

We show that mintime(N) = T is harder to decide than mintime(N) < T,
with a proof similar to Prop. 2.

Proposition 4. The mintime(N) = T7 decision problem is DP-complete for
sound acyclic negotiations, even if it is very weakly non-deterministic.

An open question is whether the minimal execution time can be computed in
PTIME if the negotiation is both sound and deterministic. The reduction from
Bin Packing does not work with deterministic (and sound) negotiations.

7 k-Layered Negotiations

In this section, we consider k-layeredness, a syntactic property that can be effi-
ciently verified (see Section 2).

7.1 Algorithmic properties

Let &k be a fixed integer. We first show that the maximum execution time can be
computed in PTIME for k-layered negotiations. Let IV; be the set of nodes at
layer i. We define for every layer i the set S; of subsets of nodes X C N; which
can be jointly enabled and such that for every process p, there is exactly one
node n(X,p) in X with p € n(X,p). An element X in S; is a subset of nodes
that can be selected by solving all non-determnism with an appropriate choice of
outcomes. Formally, we define S; inductively. We start with Sy = {ng}. We then
define Sj1 from the contents of layer S;: we have Y € S; 1 iff J, oy P = P
and there exist X € S; and an outcome r,, € R,, for every m € X, such that
n € X(n(X,p),p,rm) for each n € Y and p € P,.

Theorem 6. Let k € NT. Computing the mazimum execution time for a k-
layered acyclic negotiation N can be done in PTIME. More precisely, the worst-
case time complezity is O(|P| - IN|F+1).
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Proof (Sketch). The first step is to compute S; layer by layer, by following its
inductive definition. The set S; is of size at most 2¥, as |N;| < k by definition of
k-layeredness. Knowing 5;, it is easy to build S;11 by induction. This takes time
in O(|P||N|**1) : We need to consider all k-uples of outcomes for each layer.
There can be |[A|¥ such tuples. We need to do that for all processes (|P|), and
for all layers (at most |N]).

We then keep for each subset X € S; and each node n € X, the maximal
time f;(n,X) € N associated with n and X. From S;;; and f;, we inductively
compute f;11 in the following way: for all X € S; with successor Y € S;11
for outcomes (r,),cp, we denote fi 1(Y,n,X) = max,epm) fi(X,n(X,p)) +
v (n(X,p),rp). If there are several choices of (rp)pcp leading to the same Y,
we take 7, with the maximal f;(X,n(X,p)) + v (n(X,p),r,). We then define
fir1(Y,n) = maxxes, fir1(Y,n, X). Again, the initialization is trivial, with
fo({no},no) = 0. The maximal execution time of N is f({ns},ny). O

We can bound the complexity precisely by O(d(N) - C(N) - ||R||*"), with:

— d(N) < |N] the depth of ny, that is the number of layers of N, and ||R|| is
the maximum number of outcomes of a node,

— C(N) = max; |S;| < 2%, which we will call the number of contexts of N, and
which is often much smaller than 2%.

— k* = maxxeyy, s, |[X| < k. We say that N is k*-thread bounded, meaning
that there cannot be more that k* nodes in the same context X of any layer.
Usually, k* is strictly smaller than k = max; |V;|, as NV; = UXesi X.

Consider again the Brexit example Figure 1. We have (k + 1) = 7, while
we have the depth d(N) = 6, the negotiation is k* = 3-thread bounded (k* is
bounded by the number of processes), ||R|| = 2, and the number of contexts is
at most C(N) = 4 (EU chooses to enforce backstop or not, and Pa chooses to
go to court or not).

7.2 Minimal Execution Time

As with sound negotiations, computing minimal time is much harder than com-
puting the maximal time for k-layered negotiations:

Theorem 7. Let k > 6. The Min < T problem is NP-Complete for k-layered
acyclic negotiations, even if the negotiation is sound and very weakly non-deterministic.

Proof. One can guess in polynomial time a final run of size < |N]. If the exe-
cution time of this final run is smaller than T then we have found a final run
witnessing mintime(N) < T. Hence the problem is in NP.

Let us now show that the problem is NP-hard. We proceed by reduction from
the Knapsack decision problem. Let us consider a set of items U = {uy, ... uy}
of respective values vy, ...v, and weight wy, ..., w, and a knapsack of maximal
capacity W. The knapsack problem asks, given a value V' whether there exists a
subset of items U’ C U such that >, v; >V and such that >y w; <W.
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Fig. 5. The negotiation encoding Knapsack

We build a negotiation with 2n processes P = {p1,...p2,}, as shown in
Fig. 5. Intuitively, p;,i < n will serve to encode the value of selected items as
timing, while p;,7 > n will serve to encode the weight of selected items as timing.

Concerning timing constraints for outcomes we do the following: Outcomes
0, yes and no are associated with [0,0]. Outcome ¢; is associated with [w;, w;],
the weight of u;. Last, outcome b; is associated with a more complex function,
such that 2, b; < W iff 37, v; > V. For that, we set [(zes=tifl, “tmaeW] for
outcome b;, where v, is the largest value of an item, and V is the total value
we want to reach at least. Also, we set [TL(Z}T:L“;T)E‘(/, n’;’::;“; VYW
set T'= W, the maximal weight of the knapsack.

Now, consider a final run p in A. The only choices in p are outcomes yes or
no from C1, ..., C,. Let I be the set of indices such that yes is the outcome from
all C; in this path. We obtain 6(p) = max(}_,¢; a; + >, bi, > ;er ¢i)- We have
6(p) T =W iff 37, ., wy < W, that is the sum of the weights is lower than

max W maz—Vi) W .
W, and 37, n”U ,) + > ier Qmae=vdW 117 That is, n - vppee — D ier Vi <

N Vmaz—V

N Umaz — V, 1.€. 75:2 v; > V. Hence, there exists a path p with §(p) <T =W
iff there exists a set of items of weight less than W and of value more than V. O

] for outcome a;. We

It is well known that Knapsack is weakly NP-hard, that is, it is NP-hard only
when weights/values are given in binary. This means that Thm. 7 shows that
minimum execution time < 7' is NP-hard only when 7' is given in binary. We
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can actually show that for k-layered negotiations, the mintime(AN) < T problem
can be decided in PTIME if T is given in unary (i.e. if T is not too large):

Theorem 8. Let k € N. Given a k-layered negotiation N and T written in
unary, one can decide in PTIME whether the minimum execution time of N is
< T. The worst-case time complexity is O(|N| - |P|- (T - |N|)¥).

Proof. We will remember for each layer i a set 7T; of functions 7 from nodes N;
of layer i to a value in {1,...,T, L}. Basically, we have 7 € T; if there exists a
path p reaching X = {n € N; | 7(n) # L}, and this path reaches node n € X
after 7(n) time units. As for S;, for all p, we should have a unique node n(7,p)
such that p € n(7,p) and 7(n(7,p)) # L. Again, it is easy to initialize Ty = {79},
with 79(ng) =0, and 19(n) = L for all n # ny.

Inductively, we build 7;;1 in the following way: 7,11 € T;41 iff there exists a
7; € Ty and 1), € Ry(r, ) for all p € P such that for all n with 7;,1(n) # L, we
have 741 (n) = max, 7" (n(7,p)) + y(n(7, p), 7).

We have that the minimum execution time for A/ is min,¢7, 7(n,), for n the
depth of ny. There are at most T* functions 7 in any 7;, and there are at most
|V| layers to consider, giving the complexity. O

As with Thm. 6, we can more accurately state the complexity as O(d(N) -
C(N)-||R||*" -T* ~1). The k* — 1 is because we only need to remember minimal
functions 7 € 7;: if 7/(n) > 7(n) for all n, then we do not need to keep 7’ in 7;.
In particular, for the knapsack encoding in the proof of Thm. 7, we have k* = 3,
[|R|| = 2 and C(N) = 4. Notice that if k is part of the input, then the problem
is strongly NP-hard, even if T is given in unary, as e.g. encoding bin packing
with £ bins result to a 2¢ + 1-layered negotiations.

8 Conclusion

In this paper, we considered timed negotiations. We believe that time is of the
essence in negotiations, as examplified by the Brexit negotiation. It is thus im-
portant to be able to compute in a tractable way the minimal and maximal
execution time of negotiations. We showed that we can compute in PTIME
the maximal execution time for acyclic negotiations that are either sound or
k-layered, for k fixed. We showed that we cannot compute in PTIME the max-
imal execution time for negotiations that are not sound nor k-layered, even if
they are deterministic and acyclic (unless NP=PTIME). We also showed that
surprisingly, computing the minimal execution time is much harder, with strong
NP-hardness results in most of the classes of negotiations, contradicting a claim
in [10]. We came up with a new reasonable class of negotiations, namely k-layered
negotiations, which enjoys a pseudo PTIME algorithm to compute the minimal
execution time. That is, the algorithm is PTIME when the timing constants
are given in unary. We showed that this restriction is necessary, as the prob-
lem becomes NP-hard for constants given in binary, even when the negotiation
is sound and very weakly non-deterministic. The problem to know whether the
minimal execution time can be computed in PTIME for deterministic and sound
negotiation remains open.
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Abstract. Cartesian differential categories are categories equipped with
a differential combinator which axiomatizes the directional derivative.
Important models of Cartesian differential categories include classical
differential calculus of smooth functions and categorical models of the
differential A-calculus. However, Cartesian differential categories cannot
account for other interesting notions of differentiation such as the calcu-
lus of finite differences or the Boolean differential calculus. On the other
hand, change action models have been shown to capture these examples
as well as more “exotic” examples of differentiation. However, change
action models are very general and do not share the nice properties of
a Cartesian differential category. In this paper, we introduce Cartesian
difference categories as a bridge between Cartesian differential categories
and change action models. We show that every Cartesian differential cat-
egory is a Cartesian difference category, and how certain well-behaved
change action models are Cartesian difference categories. In particular,
Cartesian difference categories model both the differential calculus of
smooth functions and the calculus of finite differences. Furthermore, ev-
ery Cartesian difference category comes equipped with a tangent bundle
monad whose Kleisli category is again a Cartesian difference category.

Keywords: Cartesian Difference Categories - Cartesian Differential Cat-
egories - Change Actions - Calculus Of Finite Differences - Stream Cal-
culus.

1 Introduction

In the early 2000s, Ehrhard and Regnier introduced the differential A-calculus
[10], an extension of the A-calculus equipped with a differential combinator ca-
pable of taking the derivative of arbitrary higher-order functions. This develop-
ment, based on models of linear logic equipped with a natural notion of “deriva-
tive” [11], sparked a wave of research into categorical models of differentiation.

One of the most notable developments in the area is the introduction of
Cartesian differential categories [4] by Blute, Cockett and Seely, which provide an
abstract categorical axiomatization of the directional derivative from differential

* The second author is financially supported by Kellogg College, the Oxford-Google
Deep Mind Graduate Scholarship, and the Clarendon Fund.

© The Author(s) 2020
J. Goubault-Larrecq and B. Konig (Eds.): FOSSACS 2020, LNCS 12077, pp. 57-76, 2020.
https://doi.org/10.1007/978-3-030-45231-5_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_4&domain=pdf

58 M. Alvarez-Picallo and J.-S. P. Lemay

calculus. The relevance of Cartesian differential categories lies in their ability to
model both “classical” differential calculus (with the canonical example being the
category of Euclidean spaces and smooth functions between) and the differential
A-calculus (as every categorical model for it gives rise to a Cartesian differential
category [14]). However, while Cartesian differential categories have proven to
be an immensely successful formalism, they have, by design, some limitations.
Firstly, they cannot account for certain “exotic” notions of derivative, such as
the difference operator from the calculus of finite differences [16] or the Boolean
differential calculus [19]. This is because the axioms of a Cartesian differential
category stipulate that derivatives should be linear in their second argument (in
the same way that the directional derivative is), whereas these aforementioned
discrete sorts of derivative need not be. Additionally, every Cartesian differential
category is equipped with a tangent bundle monad [7, 15] whose Kleisli category
can be intuitively understood as a category of generalized vector fields. This
Kleisli category has an obvious differentiation operator which comes close to
making it a Cartesian differential category, but again fails the requirement of
being linear in its second argument.

More recently, discrete derivatives have been suggested as a semantic frame-
work for understanding incremental computation. This led to the development
of change structures [6] and change actions [2]. Change action models have been
successfully used to provide a model for incrementalizing Datalog programs [1],
but have also been shown to model the calculus of finite differences as well as
the Kleisli category of the tangent bundle monad of a Cartesian differential cate-
gory. Change action models, however, are very general, lacking many of the nice
properties of Cartesian differential categories (for example, addition in a change
action model is not required to be commutative), even though they are verified
in most change action models. As a consequence of this generality, the tangent
bundle endofunctor in a change action model can fail to be a monad.

In this work, we introduce Cartesian difference categories (Section 4.2), whose
key ingredients are an infinitesimal extension operator and a difference combi-
nator, whose axioms are a generalization of the differential combinator axioms
of a Cartesian differential category. In Section 4.3, we show that every Cartesian
differential category is, in fact, a Cartesian difference category whose infinites-
imal extension operator is zero, and conversely how every Cartesian difference
category admits a full subcategory which is a Cartesian differential category. In
Section 4.4, we show that every Cartesian difference category is a change action
model, and conversely how a full subcategory of suitably well-behaved objects of
a change action model is a Cartesian difference category. In Section 6, we show
that every Cartesian difference category comes equipped with a monad whose
Kleisli category again a Cartesian difference category. Finally, in Section 5 we
provide some examples of Cartesian difference categories; notably, the calculus
of finite differences and the stream calculus.
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2 Cartesian Differential Categories

In this section, we briefly review Cartesian differential categories, so that the
reader may compare Cartesian differential categories with the new notion of
Cartesian difference categories which we introduce in the next section. For a full
detailed introduction on Cartesian differential categories, we refer the reader to
the original paper [4].

2.1 Cartesian Left Additive Categories

Here we recall the definition of Cartesian left additive categories [4] — where
“additive” is meant being skew enriched over commutative monoids, which in
particular means that we do not assume the existence of additive inverses, i.e.,
“negative elements”. By a Cartesian category we mean a category X with chosen
finite products where we denote the binary product of objects A and B by
A x B with projection maps mp : A x B — A and 7 : A x B — B and pairing
operation (—,—), and the chosen terminal object as T with unique terminal
maps !4 : A—T.

Definition 1. A left additive category [4] is a category X such that each
hom-set X(A, B) is a commutative monoid with addition operation + : X(A, B) x
X(A, B) — X(A, B) and zero element (called the zero map) 0 € X(A, B), such
that pre-composition preserves the additive structure: (f +g)oh= foh+goh
and 0o f = 0. A map k in a left additive category is additive if post-composition
by k preserves the additive structure: ko (f +g) =ko f+kog and ko0 =0.
A Cartesian left additive category [4] is a Cartesian category X which is
also a left additive category such all projection maps mg : A x B — A and
m : A X B — B are additive.

We note that the definition given here of a Cartesian left additive category
is slightly different from the one found in [4], but it is indeed equivalent. By [4,
Proposition 1.2.2], an equivalent axiomatization is of a Cartesian left additive
category is that of a Cartesian category where every object comes equipped
with a commutative monoid structure such that the projection maps are monoid
morphisms. This will be important later in Section 4.2.

2.2 Cartesian Differential Categories

Definition 2. A Cartesian differential category [4] is a Cartesian left ad-
ditive category equipped with a differential combinator D of the form
f:A— B
D[f] : AxA— B

verifying the following coherence conditions:

[CD.1] D[f + g] = D[f] + D[g] and D[0] =0
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[CD.2] D[f]o (z,y + z) = D[f] o (x,y) + D[f] o (z,2) and D[f] o (z,0) =0
[CD.3] D[14] =m and D[my] = mgom and D[] =7 0om

[CD.4] D[(f,g)] = (D[f], Dlg]) and D['4] ='axa

[CD.5] D[g o f] = Dlg] o (f o mo, D[f])

[CD.6] D[D[fHO<<$7 ¥),(0,2)) = D[f] e (z, 2)

[CD.7] DD[f]] e {(z,),(2,0)) = D[D[f]] o {({z,2), {y,0))

Note that here, following the more recent work on Cartesian differential cat-
egories, we've flipped the convention found in [4], so that the linear argument is
in the second argument rather than in the first argument.

We highlight that by [7, Proposition 4.2], the last two axioms [CD.6] and
[CD.7] have an equivalent alternative expression.

Lemma 1. In the presence of the other azioms, [CD.6] and [CD.7] are equiv-
alent to:

[CD.6.a] D[D[f]] o ((z,0),(0,y)) = D[f] o (,y)
[CD.7.a] D[D[f]] o ((z,9),(z,w)) = D[D[f]] o ((x, 2), {y, w))

As a Cartesian difference category is a generalization of a Cartesian differ-
ential category, we leave the discussion of the intuition of these axioms for later
in Section 4.2 below. We also refer to [4, Section 4] for a term calculus which
may help better understand the axioms of a Cartesian differential category. The
canonical example of a Cartesian differential category is the category of real
smooth functions, which we will discuss in Section 5.1. Other interesting exam-
ples of can be found throughout the literature such as categorical models of the
differential A-calculus [10, 14], the subcategory of differential objects of a tangent
category [7], and the coKleisli category of a differential category [3,4].

3 Change Action Models

Change actions [1, 2] have recently been proposed as a setting for reasoning about
higher-order incremental computation, based on a discrete notion of differentia-
tion. Together with Cartesian differential categories, they provide the core ideas
behind Cartesian difference categories. In this section, we quickly review change
actions and change action models, in particular, to highlight where some of the
axioms of a Cartesian difference category come from. For more details on change
actions, we invite readers to see the original paper [2].

3.1 Change Actions

Definition 3. A change action A in a Cartesian category X is a quintuple
A= (A AA ®4a,+4,04) consisting of two objects A and AA, and three maps:

AtAXAA - A +a4:AA X AA — AA 04: T — AA

such that (AA,+4,04) is a monoid and &4 : A x AA — A is an action of AA
on A, that is, the following equalities hold:

Pa0(la,040l4)=14 @Dao(lagX+4)=DBa0(Bax1aa)
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For a change action A and given a pair of maps f: C — Aand g: C — AA,
we define f@4g: C — Aas f@19 = Dao(f,g). Similarly, for maps h : C' — AA
and k : C — AA, define h +5 k = 44 o (h, k). Therefore, that @, is an action
of AA on A can be rewritten as:

la®z 04 =14 1a @z (laa+71aa) = (la®71aa) 7 1laa

The intuition behind the above definition is that the monoid AA is a type of
possible “changes” or “updates” that might be applied to A, with the monoid
structure on AA representing the capability to compose updates.

Change actions give rise to a notion of derivative, with a distinctly “discrete”
flavour. Given change actions on objects A and B, a map f : A — B can be
said to be differentiable when changes to the input (in the sense of elements
of AA) are mapped to changes to the output (that is, elements of AB). In
the setting of incremental computation, this is precisely what it means for f to
be incrementalizable, with the derivative of f corresponding to an incremental
version of f.

Definition 4. Let A = (A, AA,®a,+4,04) and B = (B, AB,®p,+5,05) be
change actions. For a map f : A — B, a map O[f] : Ax AA — AB is a
derivative of f whenever the following equalities hold:

[CAD.1] fo(z@zy) = foxdg(O[f]o(r,y))
[CAD.2] 9[f]o(z,y +72) = (O[f] o (x,y)) +5 (O[f] o (x ©7 Yy, 2)) and
O[f] o (x,0po!p) = 0polaxaa

The intuition for these axioms will be explained in more detail in Section
4.2 when we explain the axioms of a Cartesian difference category. Note that
although there is nothing in the above definition guaranteeing that any given
map has at most a single derivative, the chain rule does hold. As a corollary,
differentiation is compositional and therefore the change actions in X form a
category.

Lemma 2. Whenever 9[f] and 8lg] are derivatives for composable maps [ and
g respectively, then 8[g] o (f o mg, B[f]) is a derivative for go f.

3.2 Change Action Models

Definition 5. Given a Cartesian category X, define its change actions category
CAct(X) as the category whose objects are change actions in X and whose arrows
f A — B are the pairs (f,8[f]), where f : A — B is an arrow in X and
A[f] : Ax AA — AB is a deriative for f. The identity is (14,71), while
composition of (f,8[f]) and (g,8g]) is (go f,8g] o (f o m, O[f])).

There is an obvious product-preserving forgetful functor £ : CAct(X) — X
sending every change action (A, AA,®,+,0) to its base object A and every
map (f,8[f]) to the underlying map f. As a setting for studying differentiation,
the category CAct(X) is rather lacklustre, since there is no notion of higher
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derivatives, so we will instead work with change action models. Informally, a
change action model consists of a rule which for every object A of X associates
a change action over it, and for every map a choice of a derivative.

Definition 6. A change action model is a Cartesian category X is a product-
preserving functor a : X — CAct(X) that is a section of the forgetful functor E.

For brevity, when A is an object of a change action model, we will write AA,
@4, +4, and 04 to refer to the components of the corresponding change action
a(A). Examples of change action models can be found in [2]. In particular, we
highlight that a Cartesian differential category always provides a change model
action. We will generalize this result, and show in Section 4.4 that a Cartesian
difference category also always provides a change action model.

4 Cartesian Difference Categories

In this section, we introduce Cartesian difference categories, which are gener-
alizations of Cartesian differential categories. Examples of Cartesian difference
categories can be found in Section 5.

4.1 Infinitesimal Extensions in Left Additive Categories

We first introduce infinitesimal extensions, which is an operator that turns a map
into an “infinitesimal” version of itself — in the sense that every map coincides
with its Taylor approximation on infinitesimal elements.

Definition 7. A Cartesian left additive category X is said to have an infinites-
imal extension ¢ if every homset X(A, B) comes equipped with a monoid mor-
phism € : X(A, B) — X(A4, B), that is, e(f + g) = (f) +e(g) and €(0) =0, and
such that e(go f) = e(g)o f and e(my) = mpoe(laxp) ande(m) =moe(laxp)-

Note that since e(g o f) = e(g) o f, it follows that e(f) = (1) o f and
£(14) : A = A is an additive map (Definition 1). In light of this, it turns out
that infinitesimal extensions can equivalently be described as a class of additive
maps €4 : A — A such that € 4« B = €4 X £5. The equivalence is given by setting
e(f) =epofand eq4 = £(14). Furthermore, infinitesimal extensions equipped
each object with a canonical change action structure:

Lemma 3. Let X be a Cartesian left additive category with infinitesimal exten-
sion e. For every object A, define the maps ®a: AX A — A as Dy = mo+e(m),
+4:AXA—= Aasmo+my, and0y: T — Aas04 =0. Then (A, A, B4, +4,04)
is a change action in X.

Proof. As mentioned earlier, that (A,+4,04) is a commutative monoid was
shown in [4]. On the other hand, that @4 is a change action follows from the
fact that ¢ preserves the addition. |
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Setting A = (A, A,®4,+4,04), we note that fd5g = f+e(g) and f+59g =
f + g, and so in particular +5 = +. Therefore, from now on we will omit the
subscripts and simply write & and +.

For every Cartesian left additive category, there are always at least two pos-
sible infinitesimal extensions:

Lemma 4. For any Cartesian left additive category X,

1. Setting €(f) = 0 defines an infinitesimal extension on X and therefore in
this case, ®a =mo and f B g=f.

2. Setting e(f) = f defines an infinitesimal extension on X and therefore in
this case, a4 =+ and fHg=f+g.

We note that while these examples of infinitesimal extensions may seem triv-
ial, they are both very important as they will give rise to key examples of Carte-
sian difference categories.

4.2 Cartesian Difference Categories

Definition 8. A Cartesian difference category is a Cartesian left additive
category with an infinitesimal extension € which is equipped with o difference
combinator 0 of the form:

f:A—>B
d[f]  AxA—B

verifying the following coherence conditions:

[CB.0] fo(x+e(y) =fox+e(d[flofr,y))

[CB.1] B[] + 9] = B[] + Blg], B[0] = 0, and Ble(f)] = =(8][f])

[C0.2] B[f]o (z,y+2) = lf] o () +Bf] o (x +£(y), ) and Df] o (z,0) = 0
[C8.3] O[la] =m and O[mp] = m1;mp and O[mi] = 7137

[CH.4] O[(f,9)] = ([f],8]g]) and B]!a] =!axa

[C8.5] Dlg o f] = Blg o (f om0, B[f])

[C8.6] D[9[f]] o ((x,y),(0,2)) = 3[f] (x+e(y),2)

[C8.7] D[3[f]] o ((z,y)(2,0)) = D[D[[]] (=, 2), (y,0))

Before giving some intuition on the axioms [C8.0] to [C8.7], we first observe
that one could have used change action notation to express [C8.0], [Cd.2], and
[C.6] which would then be written as:

[CB.0] fo(r@y)=(fox)d(d[fle(r,y))

[CO.2] O[f] o (z,y+2) = B[f]o(x,y) + B[f] o {x @y, z) and B[f] o (x,0) =0
[C8.6] D[D[f]] o ((z,1),(0,2)) = BIf] o (x Dy, 2)

And also, just like Cartesian differential categories, [C8.6] and [C8.7] have

alternative equivalent expressions.

Lemma 5. In the presence of the other axioms, [C0.6] and [CO.7] are equiv-
alent to:
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[C8.6.a] D[D[f]] o ((x,0),(0,9)) = [f] © (x,y)
[C8.7.a] D[B[f]] o ((z,y),(z,w)) = D[B[f]] o ((, 2), (y, w))

Proof. The proof is essentially the same as [7, Proposition 4.2]. |

The keen eyed reader will notice that the axioms of a Cartesian difference cat-
egory are very similar to the axioms of a Cartesian differential category. Indeed,
[CO.1], [C.3], [CD.4], [CO.5], and [CD.7] are the same as their Cartesian dif-
ferential category counterpart. The axioms which are different are [C8.2] and
[C.6] where the infinitesimal extension e is now included, and also there is the
new extra axiom [C8.0]. On the other hand, interestingly enough, [C8.6.a] is
the same as [CD.6.a]. We also point out that writing out [Cd.0] and [Cd.2]
using change action notion, we see that these axioms are precisely [CAD.1] and
[CAD.2] respectively. To better understand [C8.0] to [Cd.7] it may be useful
to write them out using element-like notation. In element-like notation, [C8.0]
is written as:

[z +e(y)) = f(x) +e(0[f(z,y))

This condition can be read as a generalization of the Kock-Lawvere axiom that
characterizes the derivative in from synthetic differential geometry [13]. Broadly
speaking, the Kock-Lawvere axiom states that, for any map f: R — R and any
x € R and d € D, there exists a unique f’(z) € R verifying

fla+d) = f(z)+d- f(x)

where D is the subset of R consisting of infinitesimal elements. It is by analogy
with the Kock-Lawvere axiom that we refer to € as an “infinitesimal extension”
as it can be thought of as embedding the space A into a subspace (A) of
infinitesimal elements.

[CO.1] states that the differential of a sum of maps is the sum of differentials,
and similarly for zero maps and the infinitesimal extension of a map. [C.2] is
the first crucial difference between a Cartesian difference category and a Carte-
sian differential category. In a Cartesian differential category, the differential of
a map is assumed to be additive in its second argument. In a Cartesian differ-
ence category, just as derivatives for change actions, while the differential is still
required to preserve zeros in its second argument, it is only additive “up to a
small perturbation”, that is:

Ofl(z,y + 2) = Bf(z,y) + B[f](x +&(y), 2)

[CO.3] tells us what the differential of the identity and projection maps are,
while [C8.4] says that the differential of a pairing of maps is the pairing of their
differentials. [C8.5] is the chain rule which expresses what the differential of a
composition of maps is:

Alg o fl(z,y) = Algl(f(x), B[f](x,y))

[CO.6] and [CO.7] tell us how to work with second order differentials. [C8.6]
is expressed as follows:

A 0[] (x,y,0,2) = B[f](x +(y), 2)
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and finally [C8.7] is expressed as:

d[8[f]] (x,y,2,0) = 8[8[f]] (x, 2,4, 0)

It is interesting to note that while [C8.6] is different from [CD.6], its alternative
version [C8.6.a] is the same as [CD.6.a].

2 [9[/11 ((2,0),(0,9)) = 8[f](x, 2)

4.3 Another look at Cartesian Differential Categories

Here we explain how a Cartesian differential category is a Cartesian difference
category where the infinitesimal extension is given by zero.

Proposition 1. FEvery Cartesian differential category X with differential com-
binator D is a Cartesian difference category where the infinitesimal extension is
defined as £(f) = 0 and the difference combinator is defined to be the differential
combinator, @ = D.

Proof. As noted before, the first two parts of the [Cd.1], the second part of
[Ca.2], [CO.3], [CD.4], [CD.5], and [CO.T] are precisely the same as their
Cartesian differential axiom counterparts. On the other hand, since (f) = 0,
[CO.0] and the third part of [Cd.1] trivial state that 0 = 0, while the first
part of [C8.2] and [C.6] end up being precisely the first part of [CD.2] and
[CD.6]. Therefore, the differential combinator satisfies the Cartesian difference
axioms and we conclude that a Cartesian differential category is a Cartesian
difference category. |

Conversely, one can always build a Cartesian differential category from a
Cartesian difference category by considering the objects for which the infinites-
imal extension is the zero map.

Proposition 2. For a Cartesian difference category X with infinitesimal exten-
sion € and difference combinator 0, then Xg, the full subcategory of objects A
such that £(14) = 0, is a Cartesian differential category where the differential
combinator is defined to be the difference combinator, D = 9.

Proof. First note that if £(14) = 0 and e(1p) = 0, then by definition it also
follows that e(laxp) = 0, and also that for the terminal object e(11) = 0
by uniqueness of maps into the terminal object. Thus X is closed under finite
products and is therefore a Cartesian left additive category. Furthermore, we
again note that since (f) = 0, this implies that for maps between such objects
the Cartesian difference axioms are precisely the Cartesian differential axioms.
Therefore, the difference combinator is a differential combinator for this subcat-
egory, and so Xy is a Cartesian differential category. |
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In any Cartesian difference category X, the terminal object T always satisfies
that (17) = 0, and so therefore, Xy is never empty. On the other hand, applying
Proposition 2 to a Cartesian differential category results in the entire category.
It is also important to note that the above two propositions do not imply that
if a difference combinator is a differential combinator then the infinitesimal ex-
tension must be zero. In Section 5.3, we provide such an example of a Cartesian
differential category that comes equipped with a non-zero infinitesimal extension
such that the differential combinator is a difference combinator with respect to
this non-zero infinitesimal extension.

4.4 Cartesian Difference Categories as Change Action Models

In this section, we show how every Cartesian difference category is a particu-
larly well-behaved change action model, and conversely how every change action
model contains a Cartesian difference category.

Proposition 3. Let X be a Cartesian difference category with infinitesimal ex-
tension € and difference combinator 8. Define the functor a : X — CAct(X) as
a(A) = (A, A, ®a,+4,04) (as defined in Lemma 3) and o(f) = (f,8[f]). Then
(X, : X' — CAct(X)) is a change action model.

Proof. By Lemma 3, (A, A,®4,+4,04) is a change action and so « is well-
defined on objects. While for a map f, 9[f] is a derivative of f in the change
action sense since [CO.0] and [C.2] are precisely [CAD.1] and [CAD.2],
and so « is well-defined on maps. That « preserves identities and composition
follows from [C@.3] and [Cd.5] respectively, and so « is a functor. That «
preserves finite products will follow from [C8.3] and [C9.4]. Lastly, it is clear
that « section of the forgetful functor, and therefore we conclude that (X, «) is
a change action model. |

It is clear that not every change action model is a Cartesian difference cat-
egory. For example, change action models do not require the addition to be
commutative. On the other hand, it can be shown that every change action
model contains a Cartesian difference category as a full subcategory.

Definition 9. Let (X, a : X — CAct(X)) be a change action model. An object A
is flat whenever the following hold:

[F.1] AA=4A

[F.2] a(®a) = (®a,®aom)

[F.3] 004 (0®a f)=0@4 f forany f:U — A.

[F.4] @4 is right-injective, that is, if ®a o (f,g) =@a 0 (f,h) then g =h.

We would like to show that for any change action model (X, «), its full sub-
category of flat objects, Flat,, 