
A Key-Value store for OCaml
Tom Ridge University of Leicester

This proposal describes a presentation to be given at
the OCaml’19 workshop. The presentation will cover
a new OCaml persistent-on-disk key-value store library.
The library uses a B-tree library introduced at OCaml’17.
The B-tree code has been extensively reworked to make it
fast, and to support both copy-on-write and mutate-in-
place operations. On top of this core, we include a write-
ahead log, session initialization and termination, and
extensive LRU-style caching. The API supports various
"sync" operations, analogous to those found in filesystems.

1 Introduction

Key-value stores have become very popular in the last
decade. Notable examples include dbm, Redis1, BDB2,
LMDB3 and many others (the Wikipedia page4 cur-
rently lists over 40).
At the OCaml’17 workshop, I introduced a Copy-on-

Write (CoW) B-tree library for OCaml5. In the inter-
vening time, this library has been progressively refined
and extended. It now supports both CoW and mutate-
in-place (which turns out to be necessary to compete
with existing implementations such as LMDB), as well
as efficient in-memory datastructures for (in-memory)
nodes and leaves. However, a raw B-tree interface is not
what programmers usually want to work with. Instead,
they would like to use a key-value store interface.
In addition to the usual find-insert-delete map inter-

face, a key-value store should provide:

• synchronization operations such as the fsync-like
“sync this key (and associated value) to disk”, “sync
this set of keys to disk” and “sync the entire store
to disk”;

1https://redis.io/
2https://www.oracle.com/database/berkeley-db/db.html
3https://symas.com/lmdb/
4https://en.wikipedia.org/wiki/Key-value_database
5Slides at http://www.tom-ridge.com/resources/ocaml_

2017_slides.pdf

• good performance (e.g. through extensive in-
memory caching)6;

• concurrency control; and
• session initialization (initializing a store from file

or block device) and termination.

2 System architecture

A simple in-memory cache linked to an on-disk B-tree
gives reasonable performance. However, for even bet-
ter performance, a “write-ahead” log is needed. The
log allows operations to be made persistent-on-disk
without the overhead of modifying the B-tree. Periodi-
cally entries in the log are asynchronously flushed to
the on-disk B-tree.
Following this approach, our system is composed of

four components (see Figure 1):

1. The syncable key-value map interface, backed by
a Least Recently Used (LRU) in-memory cache.

2. The write-ahead log (here also called a “detach-
able log”).

3. The B-tree itself.
4. The “root manager” which takes care of tracking

the B-tree root block and other session informa-
tion.

3 Detachable log

Although we have used the term “write-ahead log”
(WAL) to link our log conceptually with the logs em-
ployed by existing databases and key-value stores, our
design differs considerably from a traditional WAL and
so we prefer the term “detachable log”.
The detachable log is a persistent-on-disk log that

caches updates to the B-tree7. New updates go on the
6Caching parameters should be adjustable to limit (for example)

the maximum amount of memory used.
7Of course, there is also an in-memory cache of the log.

https://redis.io/
https://www.oracle.com/database/berkeley-db/db.html
https://symas.com/lmdb/
https://en.wikipedia.org/wiki/Key-value_database
http://www.tom-ridge.com/resources/ocaml_2017_slides.pdf
http://www.tom-ridge.com/resources/ocaml_2017_slides.pdf


A Key-Value store for OCaml

Figure 1: System architecture

end of the log. Periodically, the updates that form some
prefix of the log are applied to the B-tree. This happens
asynchronously so that the log remains live, and can
still have updates added at the end.
The entire persistent state consists of the B-tree state

(identified via a “root” block on disk), and the log state
(again, identified by a root block on disk).

When the prefix updates have executed against the
B-tree, the prefix is dropped (detached) from the log.
This is done using an atomic disk operation that records
the new root block for the log, together with the new
B-tree root block.
With this approach, synchronization calls need only

persist operations to the on-disk log. Reads from the
log are served from the in-memory cache of the log, or
(if the relevant entry is not present) from the on-disk
B-tree.

4 Concurrency

We support fine-grained concurrent operations at the
user-facing syncable-map interface8. This necessarily
involves some form of concurrency control.
Ideally threads should, as far as possible, operate in-

dependently so that one thread does not delay another.
For example, we want to avoid the situation where one
thread executes a sync operation which delays other
threads. Instead, we want threads that execute oper-
ations on different subsets of the key space to avoid
delaying each other as far as possible.
For a single thread, we also want the system to op-

erate with minimal per-thread delay.
Since all operations may involve the block layer, and

hence may take some time, we introduce three active
8Currently we support Lwt threads (see http://ocsigen.org/

lwt/4.1.0/manual/manual), but our code is generic and should be
usable with other concurrency libraries.

threads to manage different components: one thread
manages the LRU cache; one manages updates to the
log; and one manages both updates to the B-tree, and
the recording of new roots (for the B-tree and the log).
Internally, user API calls are converted to messages

passed between the three threads. Messages may
themselves contain callbacks which are invoked when
lengthy operations, such as disk accesses, complete.
The usual concurrency issues are also present. For

example, if one thread accesses a key, necessitating a
lengthy call to disk, we need to ensure that another
thread that updates that key with a more recent value
does not have that value overwritten when the long-
running disk operation returns.

5 Rough performance measure-
ments

To give a rough idea of performance, our library can
currently insert an ordered (by key) sequence of 107
key-value pairs into an empty store in about 20 seconds,
and 108 pairs in about 190 s (indicating that the system
scales smoothly to huge numbers of entries). Random
write performance is of the order of 105 writes/s on an
old SSD, and (as expected given the B-tree technology)
this number decreases only very slowly as the store
grows.
Using mutate-in-place (except where consistency re-

quires copying. . . typically when B-tree leaves are split
or merged), inserting 108 entries results in 3.4GB of
space being used, which is roughly a factor of two
overhead compared to storing the entries directly. The
overhead consists of a small number of blocks for the
B-tree index (the non-leaf nodes), and further garbage
blocks introduced during the insertion that are no-
longer needed and should be reclaimed9.

6 Workshop presentation

The plan for the workshop talk is as follows:

• I will start with a brief overview of key-value stores
and the key-value store interface;

• then briefly recall the concept of a B-tree and the
previous work, whilst motivating the differences
with this new library;

• then discuss the architecture of the library itself,
including the main interfaces and the features that
the architecture supports;

• then conclude with a performance comparison
with similar key-value stores that support on-disk
persistence and good performance (in particular,
LMDB).

9We do not yet implement garbage collection at the block layer.
However, the detachable log batches and merges updates to the same
key, and so many updates avoid hitting the B-tree altogether.

Page 2 of 3

http://ocsigen.org/lwt/4.1.0/manual/manual
http://ocsigen.org/lwt/4.1.0/manual/manual


A Key-Value store for OCaml

The code is on GitHub10. It is currently being refac-
tored, prior to initial release, to make use of Jane Street
Core_kernel libraries.

10https://github.com/tomjridge/tjr_btree and https://

github.com/tomjridge/tjr_kv

Page 3 of 3

https://github.com/tomjridge/tjr_btree
https://github.com/tomjridge/tjr_kv
https://github.com/tomjridge/tjr_kv

	Introduction
	System architecture
	Detachable log
	Concurrency
	Rough performance measurements
	Workshop presentation

